M与F1(-a,0),F2(a,0)连线斜率之积为常数m,当M点轨迹为离心率为 根3 的双曲线时,m=?
已知动点M与两定点F1(-a,0)F2(a,0)(a大于0,为常数)的连线的斜率之积为常数k,若点M的轨迹是离心率为根
点P与两定点F1(-a,0).F2(a,0)(a>0)的连线的斜率乘积为常数k,当点P的轨迹是离心率为2的双曲线是,K的
动点M与距离为2a的两个定点AB的连线斜率之积等于-1/2,求动点M的轨迹方程
两点A(-2,0),B(2,0)动点M与点A及点B连线的斜率之积为三分之一,求点M的轨迹方程
已知双曲线C:x2a2−y2b2=I(a>0,b>)的离心率为3,右焦点为F,过点M(1,0)且斜率为1的直线与双曲线C
已知动点M到定点F1(-4,0),F2(4,0)的距离之和为不小于8的常数,则动点M的轨迹是
平面内一动点M到两定点F1、F2的距离之和为常数2a,则点M的轨迹为( ) A椭圆 B圆 C无轨迹
点M与点A(-2,1)所在的直线斜率为k1,点M与B(2,0)所在的直线斜率为k2,且k1=2*k2,求点M的轨迹方程.
平面内P(X,Y)与两定点A1(-a,0)、A2(a,0)(a>0)连线的斜率之积等于非零常数m,求P点的轨迹.
双曲线虚轴上的一个端点为M,两个焦点为F1、F2,角F1MF2=120度,问双曲线的离心率为多少?
双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为( )
双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为______.