已知f(x)=m㏒4(4^x+1)+n(x-1)满足以下两个条件 f(x)是偶函数,f(x)的最小值为1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 16:11:01
已知f(x)=m㏒4(4^x+1)+n(x-1)满足以下两个条件 f(x)是偶函数,f(x)的最小值为1
求F(X)解析式 log右边的4实为log右下角
求F(X)解析式 log右边的4实为log右下角
f(x)定义域为R,偶函数意味着定义域关于原点对称且f(x)=f(-x),可以代入f(-x)=mlog4(4^(-x)+1)+n(-x-1)=mlog4(4^x+1)+n(x-1),等式化简,将log和一次函数分别移到等号两侧,代入x=1可得m=-2n.再根据f(x)关于原点对称,则最小值应该刚好在对称轴x=0处得到,代入得f(0)=mlog4(2)-n=m/2-n=1,即-2n=1,n=-1/2,m=1为所求.
已知y=f(x)是偶函数,当x>0时,f(x)=x+4x,当x∈[-3,-1]时,记f(x)的最大值为m,最小值为n,则
已知二次函数f(x)同时满足条件:(1) f(x+1)是偶函数 (2) f(x)有最小值-4
已知y=f(x)是偶函数,当x>0时,f(x)=x+4/x,当-3≤x≤-1时,f(x)取得最大值m和最小值n,则m+n
已知函数y=f(x)是偶函数,当x>0时,f(x)=x+4/x;当x属于[-3,-1]时,记f(x)的最大值为m,最小值
已知二次函数y=f(x)满足条件f(0)=1/2m和f(x+1-f(x-1)=4x-2m,求f(x)的解析式及其最小值.
已知一次函数f(x)满足条件:f[f(x)]=4x+1,求 f[x]的解析式
已知二次函数f(x)满足:函数f(x+1)为偶函数,f(x)的最小值为-4,函数f(x)的图象与x轴交点A,B的距离为4
已知f(x)是定义域为R上的函数满足f(x)+f(x-1)=1证明:f(X)是偶函数.
已知函数y=f(x)是偶函数,当x>0时,f(x)=x+4x,且当x∈[-3,-1]时,f(x)的值域是[n,m],则m
已知f(x)为偶函数,g(x)为奇函数且满足f(x)+g(x)=1/(x+1),求f(x),g(x)的解析式.
已知f(x),g(x)都是定义在r上的函数 且满足以下条件 (1)f(x)为奇函数,g(x)为偶函数(2)f(1)=0,
已知f(x)为奇函数,且满足f(x+1)=(1+f(x))/(1-f(x))证明:4是f(x)的一个周期