a>0,函数f(x)=ax-bx2,(1)当b>0时,对任意x∈R都有f(x)≤1,证明a≤2√b
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 18:08:45
a>0,函数f(x)=ax-bx2,(1)当b>0时,对任意x∈R都有f(x)≤1,证明a≤2√b
(2)当b>1时,证明:对任意x∈[0,1],|f(x)|≤1的充要条件是
b-1≤a≤2√b
(2)当b>1时,证明:对任意x∈[0,1],|f(x)|≤1的充要条件是
b-1≤a≤2√b
f(x)=ax-bx^2=-b(x-a/2b)^2+a^2/4b,函数过点(0,0),对称轴x=a/2b
(1)当b>0时,抛物线开口向下,若对任意x∈R都有f(x)≤1,那么最高点a^2/4b≤1,a^2≤4b,由于a>0,b>0,所以a≤2√b,得证
(2)当b>1时,对于x∈[0,1]会出现两种情况:①对称轴x=a/2b≥1,即在[0,1]上抛物线是单调增函数,x=1时有最大值a-b.由a/2b≥1可得a≥2b,那么a-b≥2b-b=b>1,不符合|f(x)|≤1,所以这种情况不在考虑之内;②对称轴x=a/2b<1,由于a>0,b>1,所以对称轴在[0,1]内,那么如果要求|f(x)|≤1,最高点a^2/4b≤1,解得a≤2√b.这时要考虑当x=1时的情况,如果当x=1时,f(1)<0,那么还要保证f(1)≥-1,即a-b≥-1,a≥b-1.综合得到b-1≤a≤2√b.反过来当b-1≤a≤2√b时也一定能保证|f(x)|≤1(倒过来证一下即可),所以对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2√
(1)当b>0时,抛物线开口向下,若对任意x∈R都有f(x)≤1,那么最高点a^2/4b≤1,a^2≤4b,由于a>0,b>0,所以a≤2√b,得证
(2)当b>1时,对于x∈[0,1]会出现两种情况:①对称轴x=a/2b≥1,即在[0,1]上抛物线是单调增函数,x=1时有最大值a-b.由a/2b≥1可得a≥2b,那么a-b≥2b-b=b>1,不符合|f(x)|≤1,所以这种情况不在考虑之内;②对称轴x=a/2b<1,由于a>0,b>1,所以对称轴在[0,1]内,那么如果要求|f(x)|≤1,最高点a^2/4b≤1,解得a≤2√b.这时要考虑当x=1时的情况,如果当x=1时,f(1)<0,那么还要保证f(1)≥-1,即a-b≥-1,a≥b-1.综合得到b-1≤a≤2√b.反过来当b-1≤a≤2√b时也一定能保证|f(x)|≤1(倒过来证一下即可),所以对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2√
已知a>0,函数f(x)=ax-bx的二次方当b>0时,若对任意x∈R都有f(x)≦1,证明a≦2根号b
已知a>0,函数f(x)=ax-bx的二次方,当b>0时,若对任意x∈R都有f(x)≦1,证明a≦2根号b
函数的单调性证明函数f(x)对任意的a,b∈R.都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.
函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:f(x)是R上
单调性 证明题已知函数y=f(x)的定义域R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f
函数f(x)对任意的a.b∈R;都有f(a+b)=f(a)+f(b)-1并且当x>0时f(x)>1若f(4)=5解不等式
高中抽象函数题已知函数f(x)对任意的a b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1
有关函数的一道证明题设函数y=f(x)的定义域为R,当x>0时,f(x)>1,且对任意实数a,b∈R,有f(a+b)=f
函数f(x)对任意a,b∈R,都有f(a+b)=f(a)+f(b)-1,且当x>0时,f(x)>1
1)已知函数f(x)= -x^2+ax+b^2-b+1(a,b∈R)对任意实数x都有f(1+x)=f(1-x)成立,若当
高一函数单调性设函数y=f(x),x∈R,当x>0时,f(x)>1,对任意a.b∈R,有f(a+b)=f(a)·f(b)
定义域在R上的函数y=f(x),有f(x)≠0,当x>0时,f(x)>1,且对任意的a,b属于R,都有f(a+b)=f(