作业帮 > 数学 > 作业

∫x(tanx)^2dx和∫(lnx)^2dx,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 03:01:39
∫x(tanx)^2dx和∫(lnx)^2dx,
∫x(tanx)^2dx
∫(lnx)^2dx
麻烦给出过程,
∫x(tanx)^2dx和∫(lnx)^2dx,
∫x(tanx)^2dx=∫x[(secx)^2-1]dx=∫x (secx)^2 dx-∫x dx=∫x d(tanx) -x^2/2=xtanx-∫tanxdx -x^2/2=xtanx+ln|cosx|-x^2/2+C
∫(lnx)^2dx=x×(lnx)^2 -∫x×2(lnx)×1/xdx=x×(lnx)^2 -2∫(lnx)dx=x×(lnx)^2 -2[x×lnx-∫x×1/xdx]=x×(lnx)^2 -2x×lnx+2x+C