要求有十分详细的解答过程
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 09:37:16
要求有十分详细的解答过程 注意格式 按照高考解答题标准
解题思路: 由已知中,命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,我们可以求出命题p与命题q为真或假时,实数a的取值范围,又由“p或q”为真,“p且q”为假,构造关于a的不等式组,解不等式组即可得到实数a的取值范围.
解题过程:
考点:命题的真假判断与应用. 专题:计算题. 分析:由已知中,命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,我们可以求出命题p与命题q为真或假时,实数a的取值范围,又由“p或q”为真,“p且q”为假,构造关于a的不等式组,解不等式组即可得到实数a的取值范围.
点评:本题考查的知识点是命题的真假判断与应用,其中根据已知条件,求出命题p与命题q为真或假时,实数a的取值范围,是解答本题的关键.
最终答案:略
解题过程:
考点:命题的真假判断与应用. 专题:计算题. 分析:由已知中,命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,我们可以求出命题p与命题q为真或假时,实数a的取值范围,又由“p或q”为真,“p且q”为假,构造关于a的不等式组,解不等式组即可得到实数a的取值范围.
点评:本题考查的知识点是命题的真假判断与应用,其中根据已知条件,求出命题p与命题q为真或假时,实数a的取值范围,是解答本题的关键.
最终答案:略