f(x)在[0,1]连续,(0,1)可导,且f(0)=f(1)=0,那么证明:(0,1)中存在t使得f'(t)-2011
f(x)在【0,a】上连续可导,且f(a)=0.证明:存在一点t属于(0,a),使f(t)+tf'(t)=0
设f在0到1上连续且可导,3*定积分上1/3下0e^(1-x^2)f(x)dx=f(1),证明存在t在(0,1)使f'(
关于函数连续证明fx在〔0,2]连续且f(2)=f(0),证明存在x2-x1=1使得f(x1)=f(x2).
证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)
设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)
f(x)在【0,3】连续,(0,3)可导,f(0)+f(1)+f(2)=3.且f(3)=1 证明至少在(0,3)有一点t
设f(x)在[0,1]上连续且可导,k为正整数,证明至少存在一点ξ属于(0,1)使得ξf'(ξ)+kf(ξ)=f'(ξ)
设函数f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x属于【0,1/2】,使得f(x)=f(x+1/2
一道证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明存在t属于(0,1),使f'(
f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
设f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x0∈[0,1/3]使得f(x0)=f(2x0+(1/