作业帮 > 数学 > 作业

在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 10:55:39
在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.

(1)求三棱锥A1-D1EF的体积;
(2)求EF与底面A1B1C1D1所成的角的大小.(结果可用反三角函数表示)
在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.
(1)VA1−D1EF=VE−A1D1F=
1
3•1•1=
1
3.(6分)(体积公式正确3分)
(2)取A1D1的中点G,则FG⊥平面A1B1C1D1,EF在底面A1B1C1D1的射影为GE,所求的角的大小等于∠GEF的大小,(8分)
在Rt△GEF中tan∠GEF=

2
2,所以EF与底面A1B1C1D1所成的角的大小是arctan

2
2.(12分)