求证:三角形的三边上的垂直平分线交于1点(马上就要)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:22:13
求证:三角形的三边上的垂直平分线交于1点(马上就要)
外心:三条边垂直平分线的交点,它到三个顶点的距离相等.
证明:AD=BD=CD
在△AFO与△BFO中:
AF=BF
FO=FO
∠AFO=∠BFO(垂直平分线)
∴△AOF全等于△FOB(SAS)
∴AO=BO(两个三角形全等,三边对应等)
在△AOE与△ECO中:
AE=EC
EO=EO
∠AEO=∠CEO(垂直平分线)
∴△AOE全等于△COE(SAS)
∴AO=CO(两个三角形全等,三边对应等)
∵AO=BO(两个三角形全等,三边对应等)
又∵AO=CO(两个三角形全等,三边对应等)
∴AO=BO=CO
即O为△ABC的外接圆的圆心
证明:三条垂直平分线的延长线交于一点,即GO,CO,EO交于一点.
先做一条与BC平行的穿过O的线段,命名为IH.且HI为△ABC的外接圆的直径.
现在,FO与EO已相交于O点
∵HI//BC(已知)
∵GD⊥BC且D为BC中点
∴GO⊥HI且O为HI中点,即为外接圆的圆心,也就是GO与CO,EO交于O点
证明:AD=BD=CD
在△AFO与△BFO中:
AF=BF
FO=FO
∠AFO=∠BFO(垂直平分线)
∴△AOF全等于△FOB(SAS)
∴AO=BO(两个三角形全等,三边对应等)
在△AOE与△ECO中:
AE=EC
EO=EO
∠AEO=∠CEO(垂直平分线)
∴△AOE全等于△COE(SAS)
∴AO=CO(两个三角形全等,三边对应等)
∵AO=BO(两个三角形全等,三边对应等)
又∵AO=CO(两个三角形全等,三边对应等)
∴AO=BO=CO
即O为△ABC的外接圆的圆心
证明:三条垂直平分线的延长线交于一点,即GO,CO,EO交于一点.
先做一条与BC平行的穿过O的线段,命名为IH.且HI为△ABC的外接圆的直径.
现在,FO与EO已相交于O点
∵HI//BC(已知)
∵GD⊥BC且D为BC中点
∴GO⊥HI且O为HI中点,即为外接圆的圆心,也就是GO与CO,EO交于O点