已知a=2(coswx,coswx),b=(coswx,√3sinwx),函数f(x)=a·b,若直线x=π/3是函数图
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:08:40
已知a=2(coswx,coswx),b=(coswx,√3sinwx),函数f(x)=a·b,若直线x=π/3是函数图象的一条对称轴
试求w的值.求到2sin(2wx+π/6)+1后,为什么2wx+π/6=π/2?
试求w的值.求到2sin(2wx+π/6)+1后,为什么2wx+π/6=π/2?
已知a=2(coswx,coswx),b=(coswx,√3sinwx),函数f(x)=a·b,若直线x=π/3是函数图象的一条对称轴
试求w的值.求到2sin(2wx+π/6)+1后,为什么2wx+π/6=π/2?
解析:因为,向量a=2(coswx,coswx),b=(coswx,√3sinwx),函数f(x)=a·b
f(x)=a·b=2(coswx)^2+√3sin2wx=cos2wx+√3sin2wx+1=2sin(2wx+π/6)+1
因为,直线x=π/3是函数图象的一条对称轴
f(π/3)=2sin(2wπ/3+π/6)+1=3==>2wπ/3+π/6=π/2==>w=1/2
f(π/3)=2sin(2wπ/3+π/6)+1=-1==>2wπ/3+π/6=-π/2==>w=-1
所以,w=-1或w=1/2
要求sin(2wx+π/6)的对称轴,一般要与正弦函数y=sinx的对称轴作比较,因为y=sinx的对称轴为x=2kπ±π/2
所以令2wx+π/6=π/2==>w=1/2,2wx+π/6=-π/2==>w=-1
试求w的值.求到2sin(2wx+π/6)+1后,为什么2wx+π/6=π/2?
解析:因为,向量a=2(coswx,coswx),b=(coswx,√3sinwx),函数f(x)=a·b
f(x)=a·b=2(coswx)^2+√3sin2wx=cos2wx+√3sin2wx+1=2sin(2wx+π/6)+1
因为,直线x=π/3是函数图象的一条对称轴
f(π/3)=2sin(2wπ/3+π/6)+1=3==>2wπ/3+π/6=π/2==>w=1/2
f(π/3)=2sin(2wπ/3+π/6)+1=-1==>2wπ/3+π/6=-π/2==>w=-1
所以,w=-1或w=1/2
要求sin(2wx+π/6)的对称轴,一般要与正弦函数y=sinx的对称轴作比较,因为y=sinx的对称轴为x=2kπ±π/2
所以令2wx+π/6=π/2==>w=1/2,2wx+π/6=-π/2==>w=-1
已知向量a=(coswx-sinwx,sinwx),b=(-coswx-sinwx,2√3coswx).设函数f(x)=
已知向量a=(coswx-sinwx,sinwx),b=(-coswx-sinwx,2倍根号3coswx),设f(x)=
已知向量a=(sinwx,-coswx),b=(√3coswx,coswx)(w>0),函数f(x)=ab+1/2,且函
已知向量a=(根号3sinwx,coswx),b=(coswx,-coswx)(w>0),函数f(x)=ab+1/2的图
已知向量a=(sinwx,2coswx) b=(coswx,-2根号3/3coswx) 设函数f(x)=a(根号3b+a
已知向量a=(2sinwx,coswx+sinwx),b(comwx,coswx-sinwx)(x>0),函数f(x)=
已知向量a=(根号3sinwx,coswx)、向量b=(coswx,-coswx),(w>0),函数f(x)=a·b+1
向量a=(coswx-sinwx,sinwx),向量b=(-coswx-sinwx,2倍根号3coswx) f(x)=向
已知向量a=(根号3sinwx,-coswx),b=(coswx,coswx),w大于0,函数f(
已知w>0,a=(2sinwxm+coswx,2sinwx-coswx),b=(sinwx,coswx).f(x)=a*
已知向量a=(2coswx,1),b=(根号3sinwx-coswx,n),其中x∈R,w>0,函数f(x)=a*b(x
已知向量a=(√3sinwx,coswx) b=(coswx,-coswx),(w>0)