曲线r=ae^λθ(a>0,λ>0),从θ=0到θ=a的一段弧长为 关于微积分的一道题
设曲线的极坐标方程为ρ=eaθ(a>0),则该曲线上相应于θ从0变到2π的一段弧与极轴所围成的图形的面积为14a
设曲线的极坐标方程p=e^(ab) ,a>0,则该曲线上相应于b从0变化到2π的一段弧与极轴所围的图形面积为______
求心形曲线r=a(1+cosθ)(a>0)所围成的面积
r=a(1+sinθ) (a>0)的曲线长度,是(8×2½)a么?
求曲线r=asin3θ (a>0)所围成平面图形的面积
∫(e^x)cosydx+(y-siny)dy,其中L为曲线y=sinx从(0,0)到(pi,0)的一段弧
在极坐标下,求曲线r=2acos θ,(a>0)所围成的图形的面积
曲线 f(x,y)=0关于点A (a,b)对称的曲线 是:
如何求一条曲线的长度给出一条曲线:y=2-0.25x^2如何求x从0到4时,曲线的长度?是用微积分吗?
帮我解一道微积分题求由两个曲线所形成的阴影部分的 长度 和面积(0≤θ≤2pie) r1=cosθr2=3^1/2 si
求曲线r=2a(2+cosθ )围成的平面图形的面积
已知函数f(x)=(a-1/2)e^2x+x(a∈R).若在区间(0,+)上,函数f(x)的图象恒在曲线y=2ae^x下