求y=sin2x+cos3x的最小正周期
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 18:01:44
求y=sin2x+cos3x的最小正周期
这是我网上找到的,参考一下吧:
因为 cos3x 的最小正周期为 2π/3
sin2x 的最小正周期为 π
它们的最小正周期的最小公倍数为 2π .
所以 2π 是函数 y = cos3x + sin2x 的一个周期
下面用反证法证明 2π 是最小正周期
假设 函数 f(x) = cos3x + sin2x 还有比 2π 更小的正周期 T
即 0 < T < 2π (T为常数)
使得 f(x+T) = f(x) 对一切实数x都成立
即 cos[3(x+T)] + sin[2(x+T)] = cos3x + sin2x
取 x=0,得 cos3T + sin2T = 1
取 x=π,得 -cos3T + sin2T = -1
联立解得 sin2T = 0 ,cos3T = 1
由 sin2T = 0 且 0 < 2T < 4π 得 2T = π,2π,3π
即 T = π/2,π,3π/2
由 cos3T = 1 且 0 < 3T < 6π 得 3T = 2π,4π
即 T = 2π/3,4π/3
故显然不可能同时成立
这说明假设是错误的
所以 ,函数 f(x) = cos3x + sin2x 没有比 2π 更小的正周期
于是 函数 f(x) = cos3x + sin2x 最小正周期为 2π
因为 cos3x 的最小正周期为 2π/3
sin2x 的最小正周期为 π
它们的最小正周期的最小公倍数为 2π .
所以 2π 是函数 y = cos3x + sin2x 的一个周期
下面用反证法证明 2π 是最小正周期
假设 函数 f(x) = cos3x + sin2x 还有比 2π 更小的正周期 T
即 0 < T < 2π (T为常数)
使得 f(x+T) = f(x) 对一切实数x都成立
即 cos[3(x+T)] + sin[2(x+T)] = cos3x + sin2x
取 x=0,得 cos3T + sin2T = 1
取 x=π,得 -cos3T + sin2T = -1
联立解得 sin2T = 0 ,cos3T = 1
由 sin2T = 0 且 0 < 2T < 4π 得 2T = π,2π,3π
即 T = π/2,π,3π/2
由 cos3T = 1 且 0 < 3T < 6π 得 3T = 2π,4π
即 T = 2π/3,4π/3
故显然不可能同时成立
这说明假设是错误的
所以 ,函数 f(x) = cos3x + sin2x 没有比 2π 更小的正周期
于是 函数 f(x) = cos3x + sin2x 最小正周期为 2π
求函数y=cos3x+sin3x\cos3x-sin3x的最小正周期
求函数Y=sin2X+sin3X的最小正周期
求函数y=sin3x+sin2x的最小正周期?
函数y=sin3x/4+cos3x的最小正周期
求函数y=cos3x-√3sin3x的最大值,最小值,最小正周期?
函数y=sin2x/cosx的最小正周期是
函数y=(sinx+sin3x)/(cosx+cos3x)求最小正周期
怎么求正弦函数y=3sin2x的最小正周期?
已知函数y=根号3sin2x-cos2x+1.求函数的最小正周期.
函数y=cos3x-根号三乘以sin3x的最小正周期是多少
函数y=cos2x+sin2x/cos2x-sin2x的最小正周期
求函数y=sin2x-2sin^x的最小正周期,最大值和此时x的集合