对于每一个正整数n,抛物线y=(n^2+n)x^2-(2n+1)x+1都与x轴交于两点,设为An,Bn
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 20:16:29
对于每一个正整数n,抛物线y=(n^2+n)x^2-(2n+1)x+1都与x轴交于两点,设为An,Bn
X1=((2n+1)-1)/(n^2+n)=1/(n+1)
X2=((2n+1)+1)/(n^2+n)=1/n
怎么得出来的请问个人比较迟钝。为什么是{(2n+1)-1}和{(2n+1)+1}
X1=((2n+1)-1)/(n^2+n)=1/(n+1)
X2=((2n+1)+1)/(n^2+n)=1/n
怎么得出来的请问个人比较迟钝。为什么是{(2n+1)-1}和{(2n+1)+1}
△=(-(2n+1))^2-4(n^2+n)=1
X1=((2n+1)-1)/(n^2+n)=1/(n+1)
X2=((2n+1)+1)/(n^2+n)=1/n
||A1B1|+|A2B2|+...+|A2007B2007|=A1B1+A2B2+A3B3...+A2007B2007
=1/1*1/2+1/2*1/3+.+1/n81/(n+1)=1/1-1/2+1/2-1/3+1/3-1/4+...
+1/2007-1/2008=1-1/2008=2007/2008
X1=((2n+1)-1)/(n^2+n)=1/(n+1)
X2=((2n+1)+1)/(n^2+n)=1/n
||A1B1|+|A2B2|+...+|A2007B2007|=A1B1+A2B2+A3B3...+A2007B2007
=1/1*1/2+1/2*1/3+.+1/n81/(n+1)=1/1-1/2+1/2-1/3+1/3-1/4+...
+1/2007-1/2008=1-1/2008=2007/2008
对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OA
对于每个正自然数n,抛物线Y=(n^2+n)X^2-(2n+1)X+1与X轴交与An,Bn两点,以绝对值(AnBn)表示
对于正整数n,设曲线y= x^n (1-x)在x=2处的切线与y轴交点的纵坐标为An ,则An=?
设n为正整数,已知点P1(a1,b1),P2(a2,b2)...,Pn(an,bn),...,都在函数y=(1/2)^x
对正整数n,设曲线t=x^n (1-x)在x=2处的切线与y轴交点的纵坐标为an,则数列{an/(n+1)}的前n项和公
如图抛物线y=1/2x^2+mx+n与x轴交于A,B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点
如图,抛物线 y=1/2x^2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线
如图,已知抛物线y=1/2x^2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,且AC‖x轴
如图,已知抛物线y=1/2x平方+mx+n(n≠0)与直线y=x交与A,B两点,与y轴交于点C,OA=OB,BC∥x轴.
已知(x+1)^n=a0+a1(x-1)+a2(x-1)^2+...+an(x-1)^n,其中n≥2,n∈N*.设bn=
如图,抛物线y=1/2x²+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交
初三数学题如图,已知抛物线y=2分之1x平方+mx+n(n不等于0)与直线y=x交于A.B两点,与y轴交与点C,OA=O