(asinπ/5 +bcosπ/5)/(acosπ/5 -bsinπ/5)=tan8π/15,则b/a等于 A.√3 B
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 19:07:53
(asinπ/5 +bcosπ/5)/(acosπ/5 -bsinπ/5)=tan8π/15,则b/a等于 A.√3 B.√3/3 C.-√3 D.-√3/3
(asinπ/5 +bcosπ/5)/(acosπ/5 -bsinπ/5)=tan8π/15,则b/a等于
A.√3 B.√3/3 C.-√3 D.-√3/3
(asinπ/5 +bcosπ/5)/(acosπ/5 -bsinπ/5)=tan8π/15,则b/a等于
A.√3 B.√3/3 C.-√3 D.-√3/3
(asinπ/5 +bcosπ/5)/(acosπ/5 -bsinπ/5)=tan8π/15
(tanπ/5+b/a)/(1-b/atanπ/5)=tan(π/5+π/3)
(tanπ/5+b/a)/(1-b/atanπ/5)=(tanπ/5+tanπ/3)/(1-tanπ/5tanπ/3)
(tanπ/5+b/a)/(1-b/atanπ/5)=(tanπ/5+√3)/(1-√3tanπ/5)
所以b/a=√3
选A
(tanπ/5+b/a)/(1-b/atanπ/5)=tan(π/5+π/3)
(tanπ/5+b/a)/(1-b/atanπ/5)=(tanπ/5+tanπ/3)/(1-tanπ/5tanπ/3)
(tanπ/5+b/a)/(1-b/atanπ/5)=(tanπ/5+√3)/(1-√3tanπ/5)
所以b/a=√3
选A
已知非零实数a,b满足asinα+bcosα/acosα-bsinα=tan(α+π/6),则b/a的值为
已知实数a,b均不为零,asinα+bcosαacosα-bsinα=tanβ,且β-α=π6,则ba等于( )
已知x/acosθ+y/bsinθ=1,x/asinθ-y/bcosθ=1,则x^2/a^2+y^2/b^2=
设函数f(x)=asin(π x+a)+bcos(π x+β)+4,其中a,b.a.β都是非零实数,若f(2011)=5
设函数f(x)=asin(πx+α)+bcos(πx+β)(其中a,b,α,β为非零实数),若f(2006)=5,
f(x)=asin(πx+a)+bcos(πx+b),且f(2009)=3,求f(2010)
已知函数y=2asin^2x-acos^2x+a+b的定义域为【0,π\2】,值域为【-5,1】,求常数a,b的值
在三角形ABC中求证 aCOS A+bCOS B+cCOS C=2aSIN B SIN C
已知f(x)=asin(πx+a)+bcos(πx+β),其中a,b,α,β都是非零实数.f(2012)=1,则f(20
已知函数f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数.f(2008)=-1,则f
设函数f(x)=asin(π x+a)+bcos(π x+k),其中a,b.a.k都是非零实数,且满足f(2004)=
设函数f(x)=asin(π x+a)+bcos(π x+β)+4,其中a,b.a.β都是非零实数,若f(2003)=6