f''(x)在[a,b]存在且a
f(x)在[a,b]上连续,(a,b)上可导,且f′(x)>0,若x趋向于a+,limf(2x-a)/(x-a)存在,证
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
设函数f(x)在(a,b)内连续,且f(a+),f(b-)存在,证明:函数f(x)在(a,b)内有界.
设f(x)在[a,b]上具有二阶导数 且f(a)=f(b)=0 f'(a)f'(b)>0 证明 至少存在一点
若f(x)在[a,b)上连续,且lim f(x) (x->b-) 存在,证明f(x)在[a,b)上有界.
设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c
如果函数f(x)在区间(a,b)内可导,且存在常数M使|f'(x)|小于等于M,试证f(x)在(a,b)内有界
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)
设函数f(x)在[a,b)上单调增加,且存在极限limf(x)=A,证明f(x)在[a,b)上有界
设f(x)在[a,b]上二阶可导且f'(a)=f'(b)=0,试证:存在c属于(a,b),使得If
设函数f(x)在[a,b]上两阶可导,且f'(a)=f'(b)=0,证明:存在ξ∈(a,b)使得
设函数f(x)在区间[a,b]上连续,且f(a)b.证明存在ξ∈(a,b),使得f(ξ)=ξ