等比数列{an} 的前m项积为10,前2m项积为50,求前3m项积
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 21:31:07
等比数列{an} 的前m项积为10,前2m项积为50,求前3m项积
a(n)=aq^(n-1),n = 1,2,...
10 = a(1)a(2)...a(m)= a^mq^[m(m-1)/2],
100 = a^(2m)q^[m(m-1)]
50 = a(1)a(2)...a(2m)=a^(2m)q^[m(2m-1)],
2 = q^[m^2-2m^2] = q^[-m^2],
q^[m^2] = 1/2.
q = (1/2)^(1/m^2).
10 = a^mq^[m(m-1)/2] = a^m(1/2)^[(m-1)/(2m)],
a^m = 10*2^[(m-1)/(2m)].
a(1)a(2)...a(3m)=a^(3m)q^[3m(3m-1)/2]={10*2^[(m-1)/(2m)]}^3(1/2)^[3(3m-1)/(2m)]
= 1000*2^[3(m-1)/(2m)-3(3m-1)/(2m)]
= 1000*2^[(-6m)/(2m)]
= 1000*2^[-3]
= 125
10 = a(1)a(2)...a(m)= a^mq^[m(m-1)/2],
100 = a^(2m)q^[m(m-1)]
50 = a(1)a(2)...a(2m)=a^(2m)q^[m(2m-1)],
2 = q^[m^2-2m^2] = q^[-m^2],
q^[m^2] = 1/2.
q = (1/2)^(1/m^2).
10 = a^mq^[m(m-1)/2] = a^m(1/2)^[(m-1)/(2m)],
a^m = 10*2^[(m-1)/(2m)].
a(1)a(2)...a(3m)=a^(3m)q^[3m(3m-1)/2]={10*2^[(m-1)/(2m)]}^3(1/2)^[3(3m-1)/(2m)]
= 1000*2^[3(m-1)/(2m)-3(3m-1)/(2m)]
= 1000*2^[(-6m)/(2m)]
= 1000*2^[-3]
= 125
等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为______.
数列1,2,3,...,m,...前m项之和为5050,求m的值
设Sn为等比数列{an}的前n项和,已知Sn=3an+1+m,Sn-1=3an+m,则公比q=
已知数列an的前n项和为Sn=2的n次方+m ①当m=1,an通项公式 ②若为等比数列,求m
若等比数列{an}的前n项和为Sn=3(12)n+m(n∈N*),则实数m的取值为( )
若数列(an)的前n项和Sn=5^n+m 那么要使(an)为等比数列的实数m的值为多少
已知等比数列{an}的前n项和Sn=(1/2)^n+1 +m,则无穷数列{an^2}的各项和为、?
等比数列an的前n项和为sn,sn=1+3an,求:an
已知等比数列{an}的前n项和为Sn,若am,am+2,am+1(m∈R)成等差数列,试判断Sm,Sm+2,S
数学等差数列练习题1.等差数列前m项和为30,前2m项和为100,求前3m项和2.一个凸多边形的内角成等差数列,其中最小
设Sn为数列{an}的前n项和,对任意的n为正整数,都有Sn=m+1-m乘an(1)证明:数列{an}是等比数列(2)设
(2014•安徽模拟)已知等比数列{an}的前n项和为Sn,若Sm+3-Sm+2=8(Sm-Sm-1)(m>1,m∈N)