关于椭圆准线、双曲线准线、以及抛物线准线的定义与公式
证明以抛物线的焦点弦为直径的圆与抛物线的准线相切
求证 以抛物线的的焦点弦为直径的圆必与抛物线准线相切
一道高中抛物线证明题求证:以抛物线的焦点弦为直径的圆必与抛物线准线相切.
已知抛物线y2=2px的准线与双曲线x2-y2=2的左准线重合,则抛物线的焦点坐标为 ______.
已知P(x,y)是抛物线y2=-8x的准线与双曲线x
抛物线性质|AF|与点A到准线距离的关系
圆锥曲线准线性质 椭圆的,双曲线的与抛物线的有什么区别
高三一道抛物线小题,已知抛物线y^2=2px的焦点F到其准线的距离为8,抛物线的准线与x轴交点为K,点A在抛物线上,且|
设过抛物线的焦点F作直线与抛物线相交于M,N.以MN为直径的圆与抛物线的准线的位置关系是----------------
已知抛物线y方=4x及其焦点,求圆心在抛物线上,且与x轴及抛物线的准线都相切的圆标准方程
抛物线及其标准方程求过抛物线的焦点F的弦PQ,以PQ为直径的圆与抛物线的准线的位置关系.