数列{an}的前n项和Sn=9n-n^2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 09:17:27
数列{an}的前n项和Sn=9n-n^2
1.求{an}的通项公式
2.设Tn= |a1 |+ |a2 |+……+ |an |,求Tn
3.设bn=1/n(12-an),Bn=b1+b2+……+bn,是否存在最大的整数m,使得对任意n属于N,均有Bn大于m/32成立?若存在,求出m值,不存在,说明理由.
1.求{an}的通项公式
2.设Tn= |a1 |+ |a2 |+……+ |an |,求Tn
3.设bn=1/n(12-an),Bn=b1+b2+……+bn,是否存在最大的整数m,使得对任意n属于N,均有Bn大于m/32成立?若存在,求出m值,不存在,说明理由.
1.当n>1时,an=Sn-S(n-1)=9n-n^2-[9(n-1)-(n-1)^2]=10-2n
当n=1时,a1=S1=8
2.∵a5=0
∴n5时,|an |=2n-10 则 Tn=20+2+4+…+(n-5)*2=(n-4)(n-5)+20
3.bn=1/n(12-an)=2+2/n
Bn=b1+b2+…+bn=2n+2/1+2/2+2/3+…+2/n
Bn为n的增函数,随n的增大而增大
则取Bn的最小值n=1时,Bn=4,要求Bn>m/32成立
可得4>m/32则m
当n=1时,a1=S1=8
2.∵a5=0
∴n5时,|an |=2n-10 则 Tn=20+2+4+…+(n-5)*2=(n-4)(n-5)+20
3.bn=1/n(12-an)=2+2/n
Bn=b1+b2+…+bn=2n+2/1+2/2+2/3+…+2/n
Bn为n的增函数,随n的增大而增大
则取Bn的最小值n=1时,Bn=4,要求Bn>m/32成立
可得4>m/32则m
数列2^n*An 的前n项和为Sn=9-6n
数列an的前n项和Sn满足:Sn=2an-3n
数列{an}的前n项和Sn满足:Sn=2an-3n(n属于N*)
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
已知数列{an}的前n项和sn=10n-n^2(n属于N*),求数列{an绝对值}的前n项和Bn
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
数列{an}的前n项和Sn=n^2-7n-8
数列{an}的前n项和Sn=n^2-7n-8.求
设数列{an}的前n项和为Sn,且Sn=2^n-1.
已知数列{an}的前n项和Sn=9-6n,且an+1=2^n*bn
设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
已知数列{an}的前n项和为Sn=3n^2-5n/2(n属于N*)