平面向量题目,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:43:10
平面向量题目,
以下运算表示向量加减
AO=(AB+AC)/2=(mAM+nAN)/2
因为MON共线,
所以AM-AO=t(AN-AO)
即AM-(mAM+nAN)/2=t(AN-(mAM+nAN)/2)
整理得:
(1-m/2+tm/2)AM=(t-tn/2+n/2)AN
而AM,AN不共线,
所以(1-m/2+tm/2)=(t-tn/2+n/2)=0
解得m+n=2
力荐梅涅劳斯定理:
AM/MB*BO/OC*CN/NA=1
而BO/OC=1
所以
AM/MB*CN/NA=1
[1/(1-m)]*[(n-1)/1]=1
m+n=2
AO=(AB+AC)/2=(mAM+nAN)/2
因为MON共线,
所以AM-AO=t(AN-AO)
即AM-(mAM+nAN)/2=t(AN-(mAM+nAN)/2)
整理得:
(1-m/2+tm/2)AM=(t-tn/2+n/2)AN
而AM,AN不共线,
所以(1-m/2+tm/2)=(t-tn/2+n/2)=0
解得m+n=2
力荐梅涅劳斯定理:
AM/MB*BO/OC*CN/NA=1
而BO/OC=1
所以
AM/MB*CN/NA=1
[1/(1-m)]*[(n-1)/1]=1
m+n=2