(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/12 10:01:09
(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.
(1)当AB≠AC时,证明:四边形ADFE为平行四边形;
(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.
(1)当AB≠AC时,证明:四边形ADFE为平行四边形;
(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.
(1)证明:∵△ABE、△BCF为等边三角形,
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.
∴∠CBA=∠FBE.
∴△ABC≌△EBF.
∴EF=AC.
又∵△ADC为等边三角形,
∴CD=AD=AC.
∴EF=AD.
同理可得AE=DF.
∴四边形AEFD是平行四边形.
(2)构成的图形有四类,一类是菱形,一类是线段,一类是正方形,一类是三角形.
当图形为菱形时,∠BAC≠60°(或A与F不重合、△ABC不为正三角形);
当图形为线段时,∠BAC=60°(或A与F重合、△ABC为正三角形);
当图形为正方形时,∠BAC=150°;
当图形为三角形时,E,F,D三点共线.
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.
∴∠CBA=∠FBE.
∴△ABC≌△EBF.
∴EF=AC.
又∵△ADC为等边三角形,
∴CD=AD=AC.
∴EF=AD.
同理可得AE=DF.
∴四边形AEFD是平行四边形.
(2)构成的图形有四类,一类是菱形,一类是线段,一类是正方形,一类是三角形.
当图形为菱形时,∠BAC≠60°(或A与F不重合、△ABC不为正三角形);
当图形为线段时,∠BAC=60°(或A与F重合、△ABC为正三角形);
当图形为正方形时,∠BAC=150°;
当图形为三角形时,E,F,D三点共线.
如图,在△ABC中,分别以AB,AC,BC为边在BC的同侧做等边三角形ABD,等边三角形ACE,等边三角形BCF
如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧做等边△ABE,等边△ACD,等边△BCF
如图 平行四边形ABCD中,△ABE、△BCF是以AB、BC为边的等边三角形 求证:△DEF是等
如图,以△ABC的各边为边,在BC的同一侧做等边三角形DBC,等边三角形ABE,等边三角形ACF.
如图,在Rt△ABC中,∠ACB=90°,分别以边AC、BC、AB为边向外作等边三角形,若△BCF和△ACD的面积分别为
(1)如图,以△ABC三边向外分别作等边△ACD、△ABE、△BCF,判断四边行ADFE的形状,并说明理由.
如图,以直角三角形ABC的三边分别向外做三个等边三角形ABE,BCF,ACD,其面积分别为S1,S2,S3,设直角三角形
如图,根据图形解答下列问题:1,以三角形ABC的三边为边分别作等边三角形ACD,三角形ABE,三角形BCF,判断四边形A
如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD,△BCF,△ACE.求证四边形AEFD是平行四边
已知:如图,分别以Rt三角形ABC的两条直角边AB.BC为边作等边三角形ABE和等边三角形BCF,分别联结EF、EC(1
如图,以△ABC三边向外分别作等边△ACD、△ABE、△BCF,连接EF,DF
△ABC中,分别以AB,AC,BC为边在同侧作等边三角形ABD,BCF,ACE