N阶行列式的解法,-2 3 0 0 00 -2 3 0 00 0 -2 3 00 0 0 -2 33 0 0 0 -2刚
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:11:41
N阶行列式的解法,
-2 3 0 0 0
0 -2 3 0 0
0 0 -2 3 0
0 0 0 -2 3
3 0 0 0 -2
刚才的问题失效了,打不开,只好再问一变
-2 3 0 0 0
0 -2 3 0 0
0 0 -2 3 0
0 0 0 -2 3
3 0 0 0 -2
刚才的问题失效了,打不开,只好再问一变
刚答了一个更一般的行列式
取a=-2,b=3
得 D = (-2)^5 + 3^5 = 211
再问: 谢谢你!~这样的行列式都是这个规律吗?不太明白是怎么的出这个结论的,过程很迷糊
再答: 行列式的定义中 每一项是由位于行列式中不同行不同列的n个元素的乘积得到的 第1行若取 -2, 则第1行的3与第1列的3就不能取了 此时第2行只能取 -2, 否则若取3 第2列就只能取0, 这一项就是0了 同理第3,4,5行也都只能取-2 这就构成了 (-2)^5 第1行取3的情况类似讨论
取a=-2,b=3
得 D = (-2)^5 + 3^5 = 211
再问: 谢谢你!~这样的行列式都是这个规律吗?不太明白是怎么的出这个结论的,过程很迷糊
再答: 行列式的定义中 每一项是由位于行列式中不同行不同列的n个元素的乘积得到的 第1行若取 -2, 则第1行的3与第1列的3就不能取了 此时第2行只能取 -2, 否则若取3 第2列就只能取0, 这一项就是0了 同理第3,4,5行也都只能取-2 这就构成了 (-2)^5 第1行取3的情况类似讨论
求这道行列式题的解法主对角线上全是a次对角线上全是b其它全市0还有这是个2n阶行列式
线性代数证明题 利用行列式的定义证明:若一个n阶行列式有n^2-n个以上的元素为0,则该行列式为0
线性代数行列式问题1.用行列式的定义计算下列行列式:0 1 0 ...00 0 2 ...0............0
线性代数求行列式的值得出B的行列式不是-3 0 00 -2 0&nb
n阶行列式计算 1 2 3…n-1 n -1 0 3 …n-1 n -1 -2 -3 …0 n -1 -2 -3 …-(
n*n矩阵有2行相同,用数学归纳法证明它的行列式为0
1.A为三阶矩阵,满足E-A的行列式等于0,E+A的行列式等于0,3E-2A的行列式等于0求A的特征值和A的行列式.2
行列式的定义计算0 0 0 1 00 0 2 0 0n-1 0 0 0 00 0 0 0 n顺便说一下行列式的性质有哪些
已知3阶方阵A的行列式|A|=a不等于0,则行列式|-2A|=
线性代数行列式行列式1 0 2 0 如何用行列式等值变形法则计算-1 4 3 60 2 -5 33 1 1 0
(m-n)x^2-3mx+2m+n=0 用因式分解法解这个方程
计算行列式:|2 1 0 0 0|