(2010•卢湾区一模)limn→∞(1n
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 20:06:46
(2010•卢湾区一模)
(
lim |
n→∞ |
1 |
n
设A=
1 n2+1+ 2 n2+1+ 3 n2+1+…+ 2n n2+1= 1+2+3+…+2n n2+1= 2n2+n n2+1 所以 lim n→∞( 1 n2+1+ 2 n2+1+ 3 n2+1+…+ 2n n2+1)= lim n→∞A= lim n→∞ 2n2+n n2+1=2 故答案为2.
求极限limn→∞(n-1)^2/(n+1)
求极限:limn→∞(n-1)^2/(n+1)
limn→∞(1+1/n)^n=e
求limn→∞((3^n+2^n)/(3^(n+1)-2^(n+1)))的极限
求下列数列极限(1)limn→∞2n^3-n+1/n^3+2n^2;(2)limn→∞(-2)^n+3^n/(-2)^n
limn→∞n√(1+1/n)(1+2/n)...(1+n/n)等于多少?
limn→∞,n/(√n^2+1)+(√n^2-1)求极限
limn→∞(√(n+1)-√n)√n,求·极限
limn→∞ 1/n^3(1²+2²+...+n²)
求极限limn→∞(n^2)*(k/n -1/(n+1)-1/(n+2)...-1/(n+k)
limn→∞
设f(x)=limn→∞(n−1)xnx
|