过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使.这两部分的面积之差最大,求直线方程
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 17:47:55
过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使.这两部分的面积之差最大,求直线方程
我想知道为什么垂直时最大
我想知道为什么垂直时最大
由扇形的面积公式可知,劣弧AB 所得扇形的面积S1=1 /2 α•2^2=2α,则S2=4π-2α(∠AOB=α)要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP⊥AB时,α最小
设过点P(1,1)的直线与圆分别交于点A,B,且圆被AB所分的两部分的面积分别为S1,S2且S1≤S2
劣弧 AB 所对的圆心角∠AOB=α,则S1=1 /2 α•2^2=2α,S2=4π-2α(0<α≤π)
∴S2-S1=4π-4α
要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP⊥AB时,α最小
此时KAB=-1,直线AB的方程为y-1=-(x-1)即x+y-2=0
设过点P(1,1)的直线与圆分别交于点A,B,且圆被AB所分的两部分的面积分别为S1,S2且S1≤S2
劣弧 AB 所对的圆心角∠AOB=α,则S1=1 /2 α•2^2=2α,S2=4π-2α(0<α≤π)
∴S2-S1=4π-4α
要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP⊥AB时,α最小
此时KAB=-1,直线AB的方程为y-1=-(x-1)即x+y-2=0
求问数学天才求过点P(-5,-4)且分别满足下列条件的直线方程:(1)与两坐标轴围成的三角形面积为5(2)与X轴和Y轴分
已知直线 2x+4y+3=0,p为直线上一动点,o为坐标原点,点q分向量op为1:2两部分,求q的轨迹方程.
已知直线2X+4Y+3=0,P为直线上的动点,O是坐标原点,点Q分向量OP为1/2两部分,求Q方程
求过点(2,1)的直线中,截圆x2+y2-2x+4y=0的弦长最短的直线方程.
过点(3,-1)作圆x2+y2+2x-2y-2=0的两切线,则过两切点的直线方程是
曲线和方程两题1 已知直线l:2x+4y+3=0,p为直线上l上的动点,o为坐标原点,点Q分op(向量)为1:2的两部分
已知两条直线l1:x-y+4=0与l2:2x+y+2=0的交点P,满足下列条件的直线方程.(1)过点P且过原点的直线方程
圆C方程x2+y2-4x-6y+12=0,过P(3,5)作圆C的两条切线.切点分别为A,B,求AB直线方程
过点P(4,-4)的直线l被圆C:x2+y2-2x-4y=0截得的弦AB的长度为8,求直线l的方程.(x2表示x的平方)
1·过圆外一点P(a,b)作圆x2+y2=r2的两条切线,切点为AB,求直线AB的方程
已知点A(0,0)B(8,0)C(4,4),过P(1,1)作直线l,将三角形ABC的面积分成相等的两部分,求直线的一个方
求圆心在直线3x+4y-1=0上,且过两圆x2+y2-x+y-2=0与x2+y2=5交点的圆的方程.