四道相似三角形题目,1.已知:如图,△BAC∽△EAF,∠FAE=∠CAB,求证:∠ABE=∠ACF2.如图,∠AOD=
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 02:40:32
四道相似三角形题目,
1.已知:如图,△BAC∽△EAF,∠FAE=∠CAB,求证:∠ABE=∠ACF
2.如图,∠AOD=90°,OA=OB=BC=CD,求证:(1)△BAC∽△BDA;(2)∠ACB+∠ADB=45°
3.如图,矩形ABCD中,AB=4cm,点E在边AB的延长线上,BE=3cm,EG交BC于点F,交AD于G,且FG平分矩形的面积,求BF和AG的长
4.已知:如图,F是正方形ABCD的边AB上的中点,AE=1/4AD,FG⊥EC,求证:FG^2=EG*GC
1.已知:如图,△BAC∽△EAF,∠FAE=∠CAB,求证:∠ABE=∠ACF
2.如图,∠AOD=90°,OA=OB=BC=CD,求证:(1)△BAC∽△BDA;(2)∠ACB+∠ADB=45°
3.如图,矩形ABCD中,AB=4cm,点E在边AB的延长线上,BE=3cm,EG交BC于点F,交AD于G,且FG平分矩形的面积,求BF和AG的长
4.已知:如图,F是正方形ABCD的边AB上的中点,AE=1/4AD,FG⊥EC,求证:FG^2=EG*GC
第一题利用△BAC∽△EAF可证出△AEB相似于△AFC
第二题第二小题:楼上相似以证出,把∠D转换成∠CAB,答案就显而易见了
第三题:觉得怪怪的,矩形长没给你嘛?不知道是不是水平有限,应该缺条件吧……
第4,连结EF,设AE=x,则AF=BF=2x,边长=4x,用勾股定理可证出 ∠EFC=90度,再用射影定理(摄影定理知道吧,不知道的话用相似也可求出)
第二题第二小题:楼上相似以证出,把∠D转换成∠CAB,答案就显而易见了
第三题:觉得怪怪的,矩形长没给你嘛?不知道是不是水平有限,应该缺条件吧……
第4,连结EF,设AE=x,则AF=BF=2x,边长=4x,用勾股定理可证出 ∠EFC=90度,再用射影定理(摄影定理知道吧,不知道的话用相似也可求出)
已知,如图,ABCD是正方形,∠FAD=∠FAE,求证BE+DE=AE
已知,如图,ABCD是正方形,FAD=∠FAE,求证BE+DF=AE
如图已知四边形ABCD中,对角线AC BD 相较于点0 ,∠BAO=∠CDO,求证三角形AOD相似于三角形BOC
已知,如图,△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠CAB,求证:∠C=90°
已知,如图,△ABC中∠BAC=2∠B,AB=2AC,AE平分∠CAB求证:AE=2CE
已知,如图,△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠CAB,求证:AE=2CE
已知如图,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.
如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF,BE交FC于O点.
已知:如图,AD//BC,∠B=∠D.求证:△ADC≌△CAB.
如图,已知AD=AE,∠BDO=∠CEO,求证:△ABE≌ACD
已知:如图,A,B,C,D四点在一条直线上,AC=BD,AE平行DF,∠ ABE=∠DCF.求证:三角形ABE全等三角形
如图,已知三角形ABC为直角三角形,∠BAC=90°,E和F是BC边上的点,且∠EAF=45°,求证:BE²+