在平面直角坐标系xoy中,已知圆C1:(x+3)2+y2=4和圆C2:(x-4)2+(y-4)2=4.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 09:57:57
(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.
设直线l的方程为y=k(x-4)-1,圆C1的圆心到l的距离为d,所以d=1.
由点到直线l的距离公式得d=
|7k+1|
1+k2,从而k(24k+7)=0
所以k=0或k=-
7
24,所以直线l的方程为y=-1或7x+24y-4=0.
(2)假设存在,设点P的坐标为P(a,b),l的方程为y-b=k(x-a),因为圆C1和圆C2的半径相等,被l截得的弦长也相等,所以圆C1和圆C2的半径相等,到l的距离相等,即
|-3k+b-ak|
1+k2=
|4k-4+b-ak|
1+k2,整理得:(14a-7)k2-(8a+14b-32)k+8b-16=0,因为k的个数有无数多个,所以
14a-7=0
8a+14b-32=0
8b-16=0解得
a=
1
2
b=2
综上所述,存在满足条件的定点P,且点P的坐标为P(
1
2,2).
注:用平面几何知识可能更简单.
设直线l的方程为y=k(x-4)-1,圆C1的圆心到l的距离为d,所以d=1.
由点到直线l的距离公式得d=
|7k+1|
1+k2,从而k(24k+7)=0
所以k=0或k=-
7
24,所以直线l的方程为y=-1或7x+24y-4=0.
(2)假设存在,设点P的坐标为P(a,b),l的方程为y-b=k(x-a),因为圆C1和圆C2的半径相等,被l截得的弦长也相等,所以圆C1和圆C2的半径相等,到l的距离相等,即
|-3k+b-ak|
1+k2=
|4k-4+b-ak|
1+k2,整理得:(14a-7)k2-(8a+14b-32)k+8b-16=0,因为k的个数有无数多个,所以
14a-7=0
8a+14b-32=0
8b-16=0解得
a=
1
2
b=2
综上所述,存在满足条件的定点P,且点P的坐标为P(
1
2,2).
注:用平面几何知识可能更简单.
在平面直角坐标系xOy中,已知圆C1:(x-4)^2+(y-5)^2=4和圆C2:(x+3)^2+(y-1)^2=4
在平面直角坐标系xOy中,已知圆C1:x2+y2-6x+4y+9=0,圆C2:(x+m)2+(y+m+5)2=2m2+8
高一数学题在平面直角坐标系xoy中,已知圆c1:(x+3)^2 + (y-1)^2 =4和圆c2:(x-4)^2 + (
在平面直角坐标系xoy中,已知圆C1:(x+3)²+(y-1)²=4和圆C2:(x-4)²
高二理科数学题(理科)在平面直角坐标系xOy中,已知圆C1:(x+3)²+(y-1)²=4和圆C2:
在平面直角坐标系xOy中,已知圆C1:(x+1)^2+y^2=1,圆C2:(x-3)^2+(y-4)^2=1.
在平面直角坐标系XOY中已知圆C1:(X+3)^2+(Y-1)^2=4和圆C2:(X-4)^2+(Y-5)^2=4
在平面直角坐标系xOy中,已知圆C1:(x-1)2+y2=16,圆C2:(x+1)2+y2=1,点S为圆C1上的一个动点
在平面直角坐标系xoy中,已知圆C1:(x+3)平方+(y-1)平方=4和圆C2:(x-4)平方+(y-5)平方=4
在平面直角坐标系中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4
平面直角坐标系xoy中,已知圆c1:(x+3)²+(y-1)²=4和圆c2::(x-4)²
在平面直角坐标系xOy中,二次函数C1:y=ax2+bx+c的图象与C2:y=2x2-4x+3的图象关于y轴对称,且C1