作业帮 > 数学 > 作业

如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,DBDP =DC DO =2 3

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:01:14
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,DBDP =DC DO =2 3 .
(1)求证:直线PB是⊙O的切线;
(2)求cos∠BCA的值.
那个是DB/DP=DC/DO=2/3
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,DBDP =DC DO =2 3
∵在⊿BDC和⊿PDO中
DB/DP=DC/DO
∠D=∠D
∴⊿BDC∽⊿PDO
∴∠DPO=∠DBO
∴PO∥BC
∴∠OBC=∠BOP ,∠BCA=∠POA
∵⊙O
∴OB=OC=OA
∴∠OBC=∠BCA
∴∠POA=∠POB
∵在⊿POA和⊿POB中
PO=PO
∠POA=∠POB
OA=OB
∴⊿POA≌⊿POB(S.A.S)
∴∠PAO=∠PBO
∵PA⊥AC
∴∠PAO=90度
∴∠PBO=90度
∴直线PB是⊙O的切线
∴∠DBO=90度
∴OB平方+BD平方=OD平方
BP平方+BO平方=OP平方
设OB=OA=k,则OD=3k
∴BD=2√2 k,BP=√2 k,OP=√3 k
∴cos∠BCA=cos∠POA=OA/OP=k/√3 k=√3 /3
一道不错的难题