在△ABC中,a、b、c分别是三个内角A、B、C的对边,若a=2,c=π/4,cos(B/2)=2√5/5,求△ABC的
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 18:52:40
在△ABC中,a、b、c分别是三个内角A、B、C的对边,若a=2,c=π/4,cos(B/2)=2√5/5,求△ABC的面积S
不要说是兀/5,边c怎么求啊
不要说是兀/5,边c怎么求啊
因为cos(B/2)=2√5/5,所以cosB=cos(B/2)的平方减去sin(B/2)的平方=3/5,推出sinB=4/5,所以sinA=sin(B+C)=sinBcosC+cosBsinC=7√2/10,又因为a/sinA=c/sinC 推出c=10/7 所以S=a*c*sinB/2=(2*10/7*4/5)/2=8/7
方法2可以由顶角A 做垂直于BC边上交于D点,算出了tanB=4/3,因为角C等于45°,设高AD等于DC等于X,则BD等于2-X,则tanB=AD/BD=4/3,推出X等于8/7,所以S=AD*BC/2=8/7
方法2可以由顶角A 做垂直于BC边上交于D点,算出了tanB=4/3,因为角C等于45°,设高AD等于DC等于X,则BD等于2-X,则tanB=AD/BD=4/3,推出X等于8/7,所以S=AD*BC/2=8/7
在△ABC中,a,b,c分别是三个内角A.B.C的对边,若a=2 c=π/4 cos(B/2)=(2根号5)/5 求△A
在△ABC中,三个内角A,B,C的对边分别是a,b,c,且a>c,sin2c+根号3cos(A+B)=0
在三角形ABC中,a,b,c分别为三个内角A,B,C的对边,a=2,C=45度,cos(b/2)= (2√5) /5,求
在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π/4,cosB/2=(2√5)/2,
在△ABC中,三个内角A,B,C所对的边分别是a,b,c,已知b=1,c=2
在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2 C=π/2,cosB/2=2根号5/5 求三角形面积
在三角形ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π/4,cosB/2=2根号5/5,求三角形A
设△ABC中的三个内角A,B,C所对的边分别是a,b,c,已知a=1,b=2,cosC=1/4求ABC周长 求cos(A
在 三角形ABC中,a,b,c 分别是三个内角 的对边.若 a=2,c=π/4 ,cos(B/2)=2除根号5
在三角形ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=四分之π,cos=二分之B=五分之二倍的根号五
在三角形ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π/4,cosB/2=2倍根号5/5,求三角形
在三角形ABC中a b c分别是三个内角A B C的对边 且a b c互不相等 设a=4 c=3 A=2C 求cosC的