作业帮 > 数学 > 作业

1.若关于X的方程x²+xcoscos+cos-1=0的两根x1、x2,满足x1+x2=x1x2/2,则以、、

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 02:10:21
1.若关于X的方程x²+xcoscos+cos-1=0的两根x1、x2,满足x1+x2=x1x2/2,则以、、为内角的三角形的形状( )
我知道是选“是等腰三角形,也可能是直角三角形”,但为什么呢?
2.若cosx+cosy=1/2,sinx-siny=1/3,则cos(x+y)=_____.
1.若关于X的方程x²+xcosαcosβ+cosγ-1=0的两根x1、x2,满足x1+x2=x1x2/2,则以α、β、γ为内角的三角形的形状( )
抱歉抱歉!是希腊字母,想用软键盘的,结果忘了...太不好意思了,再麻烦看一下第一题吧~
1.若关于X的方程x²+xcoscos+cos-1=0的两根x1、x2,满足x1+x2=x1x2/2,则以、、
第一题
x²+xcosαcosβ+cosγ-1=0
x1+x2=-cosαcosβ
x1x2=cosγ-1
x1+x2=x1xx2/2
所以 -cosαcosβ=(cosγ-1)/2
-2cosαcosβ=cosγ-1
-2cosαcosβ=cos[π-(α+β)]-1
-2cosαcosβ=-cos(α+β)-1
2cosαcosβ=cos(α+β)+1
2cosαcosβ=cosαcosβ-sinαsinβ+1
cos(α-β)=1
α-β=0
α=β
即为等腰三角形 因无任何条件表明α=β=45度,所以不能
判定其为直角三角形
第二题
(cosx+cosy)²=1/4 (sinx-siny)²=1/9
cos²x+2cosxcosy+cos²y=1/4 ① sin²x-2sinxsiny+sin²y=1/9②
①+②= cos²x+2cosxcosy+cos²y+sin²x-2sinxsiny+sin²y=13/36
(cos²x+sin²x)+(2cosxcosy-2sinxsiny)+(cos²y+sin²y)=13/36
2+2cos(x+y)=13/36
cos(x+y)=...
知道了吗?