作业帮 > 数学 > 作业

数列{an}中,a1=1,an+1=1/3Sn 求:1、数列{an}的通项公式 2、a2+a4+a6+...+a2n的值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 09:14:54
数列{an}中,a1=1,an+1=1/3Sn 求:1、数列{an}的通项公式 2、a2+a4+a6+...+a2n的值 快些
数列{an}中,a1=1,an+1=1/3Sn 求:1、数列{an}的通项公式 2、a2+a4+a6+...+a2n的值
1.
a(n+1)=(1/3)Sn
a(n+2)=(1/3)S(n+1)
a(n+2)-a(n+1)=(1/3)[S(n+1)-Sn]=(1/3)a(n+1)
a(n+2)/a(n+1)=4/3
所以:{an}是公比为4/3的等比数列
an=a1*q^(n-1)=(4/3)^(n-1)
{a2n}是公比为(4/3)^2=16/9的等比数列,首项为a2=4/9
2.
a2+a4+a6+……+a2n
=(4/9)[(16/9)^n-1}/[(16/9)-1]
=(4/7)[(16/9)^n-1]
如果本题有什么不明白可以追问,