作业帮 > 数学 > 作业

数学43

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 03:47:02

数学43
解题思路: (1)根据折叠的性质可得AE=GE,∠EGB=∠EAB=90°,再根据直角三角形斜边大于直角边可得DE>EG,从而判断点E不可能是AD的中点; (2)方法一:根据两直线平行,内错角相等可得∠AEB=∠EBF,再根据折叠的性质可以判定出∠AEB=∠BEG,然后得到∠EBF=∠BEF,从而判断出△FEB为等腰三角形,再根据等角的余角相等求出∠ABG=∠EFB,然后根据等腰三角形的两个底角相等求出∠BAG=∠FBE,然后根据两角对应相等,两三角形相似即可证明; 方法二:与方法一相同求出∠ABG=∠EFB后,根据等腰三角形的两腰相等,然后根据两边对应成比例且夹角相等判断出两个三角形相似; (3)①方法一:根据勾股定理求出BD的长度,再利用两角对应相等,两三角形相似得到△ABD和△DCB相似,然后根据相似三角形对应边成比例列式计算即可得解; 方法二:过点D作DH⊥BC于点H,然后求出∠C=∠ABD,再根据直角相等,判断出△ABD和△HCD相似,根据相似三角形对应边成比例列式计算即可得解; 方法三:先求出△ABD和△GFB相似,根据相似三角形对应边成比例列式求出BF的长度,再求出△EDG
解题过程:
见附件

最终答案:略