正方形DEFM内接于△ABC,且D、E分别在AB、AC上,F、M在BC上,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:03:20
正方形DEFM内接于△ABC,且D、E分别在AB、AC上,F、M在BC上,
若∠A=90°,S△CEF=1,S△BMD=4,求S△ABC.
若∠A=90°,S△CEF=1,S△BMD=4,求S△ABC.
简要的回答:
DE//BC
得到:∠B=∠ADE
因为:∠ADE+∠AED=90· 且∠AED+∠CEF=90·
所以:∠ADE=∠CEF=∠B
则△BDM相似于△ECF
(由相似比为面积比的平方)
(BM:EF)的平方=S△BDM:S△ECF=4:1
所以BM:EF=2:1
令EF=DM=a
则BM=2a
S△BDM=1/2BM·DM=a·a=4
所以a=2=DE
易知:BMD与ADE相似
故AB:BC=BM:DM=2:1
DE=2
由勾股定理得到AD、AE、CE与BD
方可求到ABC面积了
DE//BC
得到:∠B=∠ADE
因为:∠ADE+∠AED=90· 且∠AED+∠CEF=90·
所以:∠ADE=∠CEF=∠B
则△BDM相似于△ECF
(由相似比为面积比的平方)
(BM:EF)的平方=S△BDM:S△ECF=4:1
所以BM:EF=2:1
令EF=DM=a
则BM=2a
S△BDM=1/2BM·DM=a·a=4
所以a=2=DE
易知:BMD与ADE相似
故AB:BC=BM:DM=2:1
DE=2
由勾股定理得到AD、AE、CE与BD
方可求到ABC面积了
如图,矩形DEFG内接于△ABC,点G,F在BC上,点D,E分别在AB,AC上,AH垂直BC交DE于点M,DG:DE=1
如图,矩形FGHN内接于△ABC,F,G在BC边上,N,H分别在AB,AC上,且AD⊥BC于D,交NH于E,AD=8cm
在△ABC中∠ACB=90`CD⊥AB于D,正方形CEMF的顶点E在BC上,M在AB上,F在AC上,若AB=根号15,C
在△ABC中,已知,点D、E、F分别在边BC、AC、AB上,
△ABC中∠ACB=90`CD⊥AB于D,正方形CEMF的顶点E在BC上,M在AB上,F在AC上,若AB=根号15,CE
正△ABC和正方形DEFG如图放置,点E,F在边BC上,点D,G分别在边AB,AC上,求BC:EF
在Rt三角形ABC中,∠C=90°四边形CDEF市正方形,点D,E,F分别在BC,AB,AC上,且A
已知:△ABC是等边三角形,点D、E分别在AB、AC上,且DE//BC.
如图,在△ABC中,AB=8,AC=6,BC=4,点D、E分别在边AB、AC上,DE与BC的延长线相交于点F,且FC•F
如图,在RT△ABC中,∠ACB=90°,AC=BC,点D在AB上,点E,F分别在AC,BC上,且EF⊥CD交CD于G点
6.如图,已知菱形BEDF,内接于△ABC,点E,D,F分别在AB,AC和BC上.若AB=15cm,BC=12cm,求菱
如图,在RT△ABC中,∠=90°,E,F在AB上,D,E分别在BC,AC上,且四边形DEFG是正方形,求:EF&sup