作业帮 > 数学 > 作业

已知函数f(x)=ax^2+(b-8)x-a-ab,当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 18:30:25
已知函数f(x)=ax^2+(b-8)x-a-ab,当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞)时
f(x)<0.
当x>-1时,
求y=的最大值.
已知函数f(x)=ax^2+(b-8)x-a-ab,当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞
解由题知
-3,2是方程ax^2+(b-8)x-a-ab的两根,且a<0
由根与系数的关系知
故-3+2=-b/a=(8-b)/a
即a=b-8
由-3*2=c/a=-1-b
得b=5,a=-3
故f(x)=-3x^2-3x+18
故y=(f(x)-21)/(x+1)
=(-3x^2-3x+18-21)/(x+1)
=(-3x^2-3x-3)/(x+1)
=-3(x^2+x+1)/(x+1)
=-3[(x+1)^2-(x+1)+1]/(x+1)
=-3[(x+1)^2-(x+1)+1]/(x+1)
=-3[(x+1)+1/(x+1)-1]
≤-3[2√(x+1)*1/(x+1)-1]
=-3
故y的最大值为-3.
再问: 您是如何想到把-3(x^2+x+1)/(x+1)换成-3[(x+1)^2-(x+1)+1]/(x+1)的?
再答: 这是技巧,题做多了就知道了。