利用泰勒公式求解,希望也讲解一下泰勒公式那一节,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 23:02:10
利用泰勒公式求解,希望也讲解一下泰勒公式那一节,
ln(1+x)=1/1!*f'(0)x^1+1/2!*f''(0)x^2+……1/n!*f'''(n阶导数)(0)x^n
课本前面有公式的,这些都是套进去的,至于使用的是在0点处的泰勒展开是因为分母是x^2,
又因为分母阶数为2,所以不需要继续展开,只要展开到第二项就可以了(剩余无论展开多少对于x^2来说都是无穷小的).
再问: 那个o(x)怎么计算?我算出来一个前面正号,一个负号。
再答: o(x)是关于x更低阶的无穷小,正负没有任何关系,全部当做0来计算
再问:
再答: o(x^2)的意思是无论x取多少,这个式子除以x^2都是0,与前面的系数和正负号无关。
再问: 我想问为什么两个o(x)最后只剩下一个o(x)了?
再答: 和系数无关,也不进入加减的计算,统一出现了就直接计入o(x^2)这一项
再问: 哦,懂了,谢谢
课本前面有公式的,这些都是套进去的,至于使用的是在0点处的泰勒展开是因为分母是x^2,
又因为分母阶数为2,所以不需要继续展开,只要展开到第二项就可以了(剩余无论展开多少对于x^2来说都是无穷小的).
再问: 那个o(x)怎么计算?我算出来一个前面正号,一个负号。
再答: o(x)是关于x更低阶的无穷小,正负没有任何关系,全部当做0来计算
再问:
再答: o(x^2)的意思是无论x取多少,这个式子除以x^2都是0,与前面的系数和正负号无关。
再问: 我想问为什么两个o(x)最后只剩下一个o(x)了?
再答: 和系数无关,也不进入加减的计算,统一出现了就直接计入o(x^2)这一项
再问: 哦,懂了,谢谢