作业帮 > 数学 > 作业

lim/x-无穷[x(cos1/x-1)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 05:04:26
lim/x-无穷[x(cos1/x-1)
lim [x²(cos1/x-1)]
x-无穷
运用等价无穷小cos1/x-1 等价于 -1/2x² 请问 这个是根据什么得出来的?
lim/x-无穷[x(cos1/x-1)
原式=lim [x²(cos1/x-1)]
=lim [(cos1/x-1)/(1/x²)]
当x-无穷 时cos1/x-1 与1/x²均为无穷小
运用等价无穷小cos1/x-1 等价于 -1/2x²
所以原式=lim[(-1/2x²)/(1/x²)]
=1/2
等价无穷小 有几个常用公式 而常用公式 两个无穷小等价也是用极限推出的
1-cos x (x^2)/2