作业帮 > 数学 > 作业

怎样证明(√n平方+1)-(√(n+1)平方+1)〉-1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 02:10:26
怎样证明(√n平方+1)-(√(n+1)平方+1)〉-1
(√n平方+1)-(√(n+1)平方+1)大于 -1
怎样证明(√n平方+1)-(√(n+1)平方+1)〉-1
分母分子同时乘以√(n平方+1)+√[(n+1)平方+1]
√(n平方+1)-√[(n+1)平方+1]
=[n^2+1-(n+1)^2-1]/{√(n平方+1)+√[(n+1)平方+1]}
=-(2n+1)/{√(n平方+1)+√[(n+1)平方+1]}
而√(n平方+1)+√[(n+1)平方+1]>n+n+1=2n+1
所以原式大于 -1
有问题追问