求三重积分∫∫∫1/(x+y+z)^2,Ω:0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 22:09:19
求三重积分∫∫∫1/(x+y+z)^2,Ω:0
突然发现题弄错了,是3次方。求三重积分∫∫∫1/(x+y+z)^3,Ω:0
突然发现题弄错了,是3次方。求三重积分∫∫∫1/(x+y+z)^3,Ω:0
∫∫∫1/(x+y+z)²dxdydz
=∫∫[0--->1]∫[0--->1] 1/(x+y+z)² dxdydz
=∫[0--->1]∫[0--->1] -1/(x+y+z) |[1--->2]dydx
=∫[0--->1]∫[0--->1] [1/(x+y+1)-1/(x+y+2)]dydx
=∫[0--->1] [ln(x+y+1)-ln(x+y+2)] |[0--->1]dx
=∫[0--->1] [ln(x+1+1)-ln(x+0+1)-ln(x+1+2)+ln(x+0+2)] dx
=∫[0--->1] [2ln(x+2)-ln(x+1)-ln(x+3)] dx
分部积分
=x[2ln(x+2)-ln(x+1)-ln(x+3)]-∫[0--->1] [2x/(x+2)-x/(x+1)-x/(x+3)]dx
=x[2ln(x+2)-ln(x+1)-ln(x+3)]-∫[0--->1] [2(x+2-2)/(x+2)-(x+1-1)/(x+1)-(x+3-3)/(x+3)]dx
=x[2ln(x+2)-ln(x+1)-ln(x+3)]-∫[0--->1] [2-4/(x+2)-1+1/(x+1)-1+3/(x+3)]dx
=x[2ln(x+2)-ln(x+1)-ln(x+3)]-∫[0--->1] [-4/(x+2)+1/(x+1)+3/(x+3)]dx
=x[2ln(x+2)-ln(x+1)-ln(x+3)]+ [4ln(x+2)-ln(x+1)-3ln(x+3)] |[0--->1]
=2ln3-ln2-ln4+4ln3-ln2-3ln4-4ln2+3ln3
=9ln3-6ln2-4ln4
=9ln3-6ln2-8ln2
=9ln3-14ln2
再问: 额,,突然发现题弄错了,是3次方。。。求三重积分∫∫∫1/(x+y+z)^3,Ω:02] dydx =(1/2)∫[0--->1]∫[0--->1] [1/(x+y+1)²-1/(x+y+2)²] dydx =(1/2)∫[0--->1] [-1/(x+y+1)+1/(x+y+2)] |[0--->1]dx =(1/2)∫[0--->1] [-1/(x+1+1)+1/(x+0+1)+1/(x+1+2)-1/(x+0+2)] dx =(1/2)∫[0--->1] [1/(x+1)+1/(x+3)-2/(x+2)] dx =(1/2)[ln(x+1)+ln(x+3)-2ln(x+2)] |[0--->1] =(1/2)[ln2+ln4-2ln3-ln3+2ln2] =(1/2)[3ln2+ln4-3ln3] =(1/2)[3ln2+2ln2-3ln3] =(1/2)(5ln2-3ln3)
=∫∫[0--->1]∫[0--->1] 1/(x+y+z)² dxdydz
=∫[0--->1]∫[0--->1] -1/(x+y+z) |[1--->2]dydx
=∫[0--->1]∫[0--->1] [1/(x+y+1)-1/(x+y+2)]dydx
=∫[0--->1] [ln(x+y+1)-ln(x+y+2)] |[0--->1]dx
=∫[0--->1] [ln(x+1+1)-ln(x+0+1)-ln(x+1+2)+ln(x+0+2)] dx
=∫[0--->1] [2ln(x+2)-ln(x+1)-ln(x+3)] dx
分部积分
=x[2ln(x+2)-ln(x+1)-ln(x+3)]-∫[0--->1] [2x/(x+2)-x/(x+1)-x/(x+3)]dx
=x[2ln(x+2)-ln(x+1)-ln(x+3)]-∫[0--->1] [2(x+2-2)/(x+2)-(x+1-1)/(x+1)-(x+3-3)/(x+3)]dx
=x[2ln(x+2)-ln(x+1)-ln(x+3)]-∫[0--->1] [2-4/(x+2)-1+1/(x+1)-1+3/(x+3)]dx
=x[2ln(x+2)-ln(x+1)-ln(x+3)]-∫[0--->1] [-4/(x+2)+1/(x+1)+3/(x+3)]dx
=x[2ln(x+2)-ln(x+1)-ln(x+3)]+ [4ln(x+2)-ln(x+1)-3ln(x+3)] |[0--->1]
=2ln3-ln2-ln4+4ln3-ln2-3ln4-4ln2+3ln3
=9ln3-6ln2-4ln4
=9ln3-6ln2-8ln2
=9ln3-14ln2
再问: 额,,突然发现题弄错了,是3次方。。。求三重积分∫∫∫1/(x+y+z)^3,Ω:02] dydx =(1/2)∫[0--->1]∫[0--->1] [1/(x+y+1)²-1/(x+y+2)²] dydx =(1/2)∫[0--->1] [-1/(x+y+1)+1/(x+y+2)] |[0--->1]dx =(1/2)∫[0--->1] [-1/(x+1+1)+1/(x+0+1)+1/(x+1+2)-1/(x+0+2)] dx =(1/2)∫[0--->1] [1/(x+1)+1/(x+3)-2/(x+2)] dx =(1/2)[ln(x+1)+ln(x+3)-2ln(x+2)] |[0--->1] =(1/2)[ln2+ln4-2ln3-ln3+2ln2] =(1/2)[3ln2+ln4-3ln3] =(1/2)[3ln2+2ln2-3ln3] =(1/2)(5ln2-3ln3)
计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y
一道三重积分高数题∫∫∫(1+x+y+z)ˆ-3 dxdydz ,Ω 为平面 x=0,y=0,z=0,x+y+
设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy
用投影法和截面法分别计算求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所
投影法和截面法求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所围成空间闭
求三重积分∫dv,积分区域是由z=x^2+y^2,z=1/2*(x^2+y^2),x+y=±1,x-y=±1围成
三重积分求体积,∫∫∫(y²+z²) dv,积分区域为由xoy面上的曲线y²=2x绕x轴旋
求三重积分∫∫∫(x^2+y^2)dxdydz 曲面是x^2+y^2=z^2 和z=2围成的区域
计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域
利用柱面坐标系求三重积分z=x^2+y^2 z=2y.求∫∫∫Zdv
∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用球面坐标变换求上述三重积分.
计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域,