作业帮 > 综合 > 作业

证明准紧集的闭包是紧集

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 12:42:18
证明准紧集的闭包是紧集
证明准紧集的闭包是紧集
准紧集的任何子列都有收敛子列,但是其收敛的聚点未必属于自身.
而由闭包的定义可知,闭包一定包含了自身的所有聚点.从而上述聚点也都包含在闭包之内.
由于准紧集的闭包相对于原准紧集新加入的点都是原准紧集的聚点,因此这些点的任何序列也都必定有收敛子列.否则假如存在一个聚点的序列无收敛子列.则由聚点的定义可知,对此序列中的每一点,都可以找到原准紧集中的一点,使得两者之间的距离足够小.那么由此条序列可以得到对应的原准紧集中的一条序列,该序列也无收敛子列,这与准紧集定义矛盾.
因此准紧集的闭包的任何子列都有收敛子列,且收敛到自身.
这正是紧集的定义.
因此准紧集的闭包是紧集.
证毕.