若(ax-b)(3x+4)=bx^2+cx+72,则a=?b=?c=?
三次函数f(x)=ax^3+bx^2+cx(a,b,c∈R)
f(x)=ax^3+bx^2+cx+d无极值点,则a,b,c关系是b^2
已知(3x+1)^3=ax^3+bx^2+cx+d,则代数式a-b+c-d
(x-3)^5=ax^5+bx^4+cx^3+dx^2+ex+f ,则a+b+c+d+e+f= ,b+c+d+e= .
若函数f(x)=ax^4+bx^3+cx^2+dx+3(a,c不等于0)是偶函数,则b^2+d^2=
若函数f(x)=ax^4+bx^3+cx^2+dx+3(a,c不等于0)是偶函数,则b^2+d^2=
若(2x+1)^5=ax^5+bx^4+cx^3+dx^2+ex+f,则a-b+c-d+e-f的值=
(x+1)^5=ax^5+bx^4+cx^3+dX^2+ex+f,求a+b+c+d+e+f,b+c+d+e,a+c+e
若(ax-b)(3x+4)=6x平方+cx+72 则a=( )b=( )c=( )
(x+1)*6=x*6+ax*5+bx*4+cx*3+dx*2+ex+1 则a+b+c+d+e=?
这个道方程怎么解?已知ax^4+bx^3+cx^2+dx+c=(x-2)^4,求值:(1)a+b+c+d+e;(2)b+
已知恒等式x^4+ax^3+bx^2+cx+24=(x+1)(x+2)(x+3)(x+m),a+b+c+m=