作业帮 > 数学 > 作业

四边形ABCD是正方形动点P在射线DB上运动动点H在射线CB上运动是否存在AP⊥PH且AP=PH若在说明理由若不在说明

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 07:11:59
四边形ABCD是正方形动点P在射线DB上运动动点H在射线CB上运动是否存在AP⊥PH且AP=PH若在说明理由若不在说明
四边形ABCD是正方形动点P在射线DB上运动动点H在射线CB上运动是否存在AP⊥PH且AP=PH若在说明理由若不在说明
在射线 DB 上存在一点 P ,在射线 CB 上存在一点 H .
使得 AP ⊥ PH ,且 AP = PH 成立,证明如下:
当 点 P 如图① 所示位 置时,不妨设 PA = PH ,过点 P 作 PQ ⊥ BC ,PM ⊥ CD ,PN ⊥ AD ,垂足分别为 Q,M ,N .
若 PA = PH .由 PM = PN 得:
AN=PQ ,∴ Rt△PQH ≌ Rt△ APN
∴∠HPQ = ∠PAN .
又 ∠PAN + ∠APN = 90°
∴∠APN + ∠HPQ = 90°
∴ AP ⊥ PH .
当点 P 在如图②所示位置时,
过点 P 作 PM ⊥ BC ,PN ⊥ AB ,
垂足分别为 M ,N .
同理可证 Rt△PMH ≌ Rt△PAN .
∠MHP = ∠NAP .
又 ∠MHP = ∠HPN ,
∠HPA = ∠NPA + ∠HPN = ∠MHP + ∠HPM = 90° ,
∴ PH ⊥ PA .
当 P 在如图③所示位置时,
过点 P 作 PN ⊥ BH ,垂足为 N ,PM ⊥ AB 延长线,垂足为 M.
同理可证 Rt△PHM ≌ Rt△PMA .
∴ PH ⊥ PA .