证明:多项式g(x)=1+x^2+x^4...+x^2n能整除f(x)=1+x^4+x^8...+x^4n的充分必要条件
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 15:01:03
证明:多项式g(x)=1+x^2+x^4...+x^2n能整除f(x)=1+x^4+x^8...+x^4n的充分必要条件是n为偶数
如题
充分性和必要性都要证明
如题
充分性和必要性都要证明
g(x)=1+x^2+x^4...+x^2n能整除f(x)=1+x^4+x^8...+x^4n
f(x)/g(x)=(1+x^4+x^8...+x^4n)/(1+x^2+x^4...+x^2n)
=[(1-x^(2n+2))/(1-x^2)]/[(1-x^(4n+4))/(1-x^4)]
=[1+x^(2n+2)]/(1+x^2) 为整式
[1+x^(2n+2)]/(1+x^2)=x^(2n)-x^(2n-2)+[1+x^(2n-2)]/(1+x^2)
所以 [1+x^(2n+2)]/(1+x^2) 为整式
《==》[1+x^(2n-2)]/(1+x^2) 为整式
《==》[1+x^(2n-6)]/(1+x^2) 为整式
……
《==》[1+x^(0+2)]/(1+x^2) 为整式
所以等价于n为偶数
f(x)/g(x)=(1+x^4+x^8...+x^4n)/(1+x^2+x^4...+x^2n)
=[(1-x^(2n+2))/(1-x^2)]/[(1-x^(4n+4))/(1-x^4)]
=[1+x^(2n+2)]/(1+x^2) 为整式
[1+x^(2n+2)]/(1+x^2)=x^(2n)-x^(2n-2)+[1+x^(2n-2)]/(1+x^2)
所以 [1+x^(2n+2)]/(1+x^2) 为整式
《==》[1+x^(2n-2)]/(1+x^2) 为整式
《==》[1+x^(2n-6)]/(1+x^2) 为整式
……
《==》[1+x^(0+2)]/(1+x^2) 为整式
所以等价于n为偶数
当n.>=0时,多项式x^(n+2)+(〖x+1)〗^(2n+1)能被x^2+x+1整除.请用数学归纳法证明
高一数学-已知函数f(x)=x-1,g(x)=x^2+2x+1,证明10^f(x)(4/5)^g(n)
1.已知多项式x^4-5x^3+11x^2+mx+n能被x^2-2x+1整除,求m、n的值.
还有g(x)=x^2-3x+3 fn(x)=1+g(x)+g^2(x)+.+g^n(x)f(x)=limfn(x)(n趋
f(x)=x(x-1)(x-2)(x-3).(x-n),则f(x)的n+1阶求导
设f(x),g(x),h(x)都是多项式,若 (f(x),g(x))=1,证明(f(x)+g(x)h(x),g(x))=
已知多项式x^4-5x^3+11x^2+mx+n能被(x-1)^2整除,求m+n的值
在实数域上分解多项式:g(x)=x^2n+x^n+1
3道高等数学题f(x)=x(x-1)(x-2)(x-3)…(x-n) 求f(x)的n+1阶导数.应用lagrange证明
再问两道高数题一,证明o(kx^n)=o(x^n)二,已知x->4a时f(x)/(x-4a)=1,x->2a时f(x)/
确定m的值,使多项式f(x)=x^5+3x^4+8x^3+11x+m能被x+2整除
设f(x)=x(x+1)(x+2)…(x+n) f(x)的n+1阶导数