对于函数y=f(x),f(x)一定可以用一个具体的式子表示出来这种说法错在哪里
函数f(x)定义域为R,且对于一切实数x,y都在f(x+y)=f(x)+(y),试判断f(x)的奇偶性.
我的解法错在哪了?已知函数f(x)对于任意实数x,y都有f(x+y)=f(x)+2y(x+y),且f(1)=1,求f(x
对于二元函数z = f ( x,y),下列说法正确的是( ) (请说明理由,
对于函数y=f(x),以下说法正确的有( )
1.定义域关于坐标原点对称的函数y=f(x)不一定有奇偶性,但一定可以表示为一个奇函数与一个偶函数的
f(x)是定义在(0,+∞)上的增函数,且对于任意x>0满足f(x/y)=f(x)-f(y),
若f(x)是定义在(0,+无穷大)上的增函数,且对于x>0满足f(x/y)=f(x)-f(y).
函数奇偶性已知定义在R上的函数f(x)对于任意x,y属于R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0
f(x)是定义在上的函数,对于任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时f(x)>1,证明f(x)
设函数y=f(x)是定义在R上的函数,且f(x)>0,对于任意的实数x,y,都有f(x+y)=f(x)+f(y),当x>
如果定义在R上的函数f(x)对于任意的x,y恒有:f(x-y)=f(x)-f(y)成立,且f(x)不恒为0,则f(x)的
已知函数y=f(x)是定义在区间D上的增函数,对于任意的x1,x2∈D,且x1≠x2,则式子(f(x1)-f(x2))/