f(x)有二阶连续偏导吗?
设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值
设f(x)连续,求ddx
设函数f(x)在[0,1]有二阶连续导数 求 ∫(0积到1)[2f(x)+x(1-x)f''(x)]dx
设函数f(x)有二阶连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设f(x)有二阶连续导数且f'(x)=0,lim(x趋向于0)f''(x)/|x|=1则
设Z=f(x,x/y),f有二阶连续偏导数,求az/ax,az/ay,az/axay
设f(x)有二阶连续导数且f'(0)=0,lim(x趋向于0)f''(x)/|x|=1则
设函数z=f(x,y)在某区域内有二阶连续偏导数,且f(x,2x)=x,f'x(x,2x)=x^2,f''xy(x,2x
1、设函数z=f(x,y)在某区域内有二阶连续偏导数,且f(x,2x)=x,f(x,2x)对x的二阶偏导=x^2,f(x
设函数f(x),g(x)连续,证明h(x)=max{f(x),g(x)}l连续
f(x)=sgn(e^x)的连续区间
设f(x)有二阶连续导数 且f(0)=f'(0)=0 f''(0)>0 又设u=u(x)是曲线y=f(x)在点(x,f(