作业帮 > 数学 > 作业

若a>b (a,b∈R),求证a^(2n+1)>b^(2n+1) (n∈N).

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 07:15:53
若a>b (a,b∈R),求证a^(2n+1)>b^(2n+1) (n∈N).
能否不用函数单调性来证
若a>b (a,b∈R),求证a^(2n+1)>b^(2n+1) (n∈N).
可以的 用不等式证明
a>b (a,b∈R)(n∈N)
(1)当a,b同为正数时a/b >1
所以(a/b)^(2n+1) >1
所以
a^(2n+1)
----------- > 1
b^(2n+1)
所以a^(2n+1)>b^(2n+1)
(2)当a,b同为负数时 a/b < 1
所以(a/b)^(2n+1) < 1
所以
a^(2n+1)
----------- < 1
b^(2n+1)
因为a^(2n+1),b^(2n+1) 都分别小于0
所以a^(2n+1)>b^(2n+1) (同乘以负数 不等号方向变换)
(3)当a,b分别为一正一负时 a/b < 1 且
所以(a/b)^(2n+1) < 1
所以
a^(2n+1)
----------- < 1
b^(2n+1)
当a>0 bb^(2n+1) (同乘以负数 不等号方向变换)
当a0 时
a^(2n+1)0
所以a^(2n+1)b (a,b∈R)时
a^(2n+1)>b^(2n+1) (n∈N).