若a>b (a,b∈R),求证a^(2n+1)>b^(2n+1) (n∈N).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 07:15:53
若a>b (a,b∈R),求证a^(2n+1)>b^(2n+1) (n∈N).
能否不用函数单调性来证
能否不用函数单调性来证
可以的 用不等式证明
a>b (a,b∈R)(n∈N)
(1)当a,b同为正数时a/b >1
所以(a/b)^(2n+1) >1
所以
a^(2n+1)
----------- > 1
b^(2n+1)
所以a^(2n+1)>b^(2n+1)
(2)当a,b同为负数时 a/b < 1
所以(a/b)^(2n+1) < 1
所以
a^(2n+1)
----------- < 1
b^(2n+1)
因为a^(2n+1),b^(2n+1) 都分别小于0
所以a^(2n+1)>b^(2n+1) (同乘以负数 不等号方向变换)
(3)当a,b分别为一正一负时 a/b < 1 且
所以(a/b)^(2n+1) < 1
所以
a^(2n+1)
----------- < 1
b^(2n+1)
当a>0 bb^(2n+1) (同乘以负数 不等号方向变换)
当a0 时
a^(2n+1)0
所以a^(2n+1)b (a,b∈R)时
a^(2n+1)>b^(2n+1) (n∈N).
a>b (a,b∈R)(n∈N)
(1)当a,b同为正数时a/b >1
所以(a/b)^(2n+1) >1
所以
a^(2n+1)
----------- > 1
b^(2n+1)
所以a^(2n+1)>b^(2n+1)
(2)当a,b同为负数时 a/b < 1
所以(a/b)^(2n+1) < 1
所以
a^(2n+1)
----------- < 1
b^(2n+1)
因为a^(2n+1),b^(2n+1) 都分别小于0
所以a^(2n+1)>b^(2n+1) (同乘以负数 不等号方向变换)
(3)当a,b分别为一正一负时 a/b < 1 且
所以(a/b)^(2n+1) < 1
所以
a^(2n+1)
----------- < 1
b^(2n+1)
当a>0 bb^(2n+1) (同乘以负数 不等号方向变换)
当a0 时
a^(2n+1)0
所以a^(2n+1)b (a,b∈R)时
a^(2n+1)>b^(2n+1) (n∈N).
已知cn=a^n+a^(n-1)b+a^(n-2)b^2...+b^n(n∈N*,a>0,b>0)
1.S=a^n+a^(n-1)b+a^(n-2)b^2+……+ab^(n-1)+b^n(n∈N*,ab≠0)
已知Un=a^n+a^(n-1)b+a^(n-2)b^2+...+ab^(n-1)+b^n(n∈N*,a>0,b>0),
a^n-b^n=(a-b)[(a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-1)],n是整数
(数列)A(n)=(n+2)/2^n;B(n)=(6n+11)/5(n+1)试比较A(n)与B(n)大小(n∈N*)不好
线性代数问题:设A,B分别为m乘n,n乘t矩阵,求证(1)若r(A)=n,则r(AB)=r(B) (2)若r(B)=n,
线性代数的题目设A,B分别为m*n,n*t的矩阵,求证:(1)若r(A)=n,则r(AB)=r(B) (2)若r(B)=
利用等比数列求和公式证明:(a+b)(a^n+a^(n-1)b+a^(n-2)b^2+.+b^n)=a^(n+1)-b^
(a-b)(a^(n-1)-b^(n-1))=(a-b)^2(a^(n-2)+a^(n-3)b+……+ab^(n-3)+
lim n->无穷 (1+a+a^2+...+a^n)/(1+b+b^2+...+b^n)
已知:a.b是正实数,n是正整数,n不等于1,求证 a^n+b^n>=a^(n-1) b+a b^(n-1)
如果A>B>0,试证明a的1/n次方大于b的1/n次方.(n∈N,n≥2)