作业帮 > 数学 > 作业

如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 22:00:23
如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6),那么:
(1)当t=______s时,△QAP为等腰直角三角形.
(2)若四边形QAPC的面积为S;S是否随着t的变化而变化?如果是写出它们之间的函数关系式;如果不是求出S的值.
(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点
(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形,即:6-t=2t,
解得:t=2(s),
所以,当t=2s时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC=
1
2QA•DC=
1
2(6-t)•12=36-6t.
在△APC中,AP=2t,BC=6,
∴S△APC=
1
2AP•BC=
1
2•2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=(36-6t)+6t=36(cm2).
由计算结果发现:
在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变.(也可提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来研究,在矩形ABCD中:
①当 QA:AB=AP:BC时,△QAP∽△ABC,那么有:
( 6-t):12=2t:6,解得t=
6
5=1.2(s),
即当t=1.2s时,△QAP∽△ABC;
②当 QA:BC=AP:AB时,△PAQ∽△ABC,那么有:
( 6-t):6=2t:12,解得t=3(s),
即当t=3s时,△PAQ∽△ABC;
所以,当t=1.2s或3s时,以点Q、A、P为顶点的三角形与△ABC相似.