作业帮 > 数学 > 作业

已知向量a=(cosθ,sinθ,1),向量b=(√3,-1,2)则|2a-b|的最大值是

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 02:08:50
已知向量a=(cosθ,sinθ,1),向量b=(√3,-1,2)则|2a-b|的最大值是
已知向量a=(cosθ,sinθ,1),向量b=(√3,-1,2)则|2a-b|的最大值是
|2a-b|=2|a-b/2| 即求点a到点(√3/2,1/2)的最大值最小值而向量a=(cosθ,sinθ)所以a点在圆x^2 y^2=1 作图:连接点(√3/2,1/2