若{an}为正项的等比数列,求证1/(lga1*lga2)+1/(lga2*lga3)+...+1/(lga(n-1)*
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 05:56:15
若{an}为正项的等比数列,求证1/(lga1*lga2)+1/(lga2*lga3)+...+1/(lga(n-1)*lgan)=(n-1)/(lga1*lgan)
【证】设等比数列公比为q
1/(lga1*lga2)+1/(lga2*lga3)+...+1/(lga(n-1)*lgan)
=1/[lga1(lga1+lgq)]+1/[(lga1+lgq)(lga1+2lgq)]+……+1/[lga1+(n-2)q][lga1+(n-1)q]
={1/lga1-1/(lga1+lgq)+1/(lga1+lgq)-1/(lga1+2lgq)+……-1/[lga1+(n-1)q]}/lgq
={1/lga1-1/[lga1+(n-1)q]}/lgq
=(n-1)/(lga1*lgan)
1/(lga1*lga2)+1/(lga2*lga3)+...+1/(lga(n-1)*lgan)
=1/[lga1(lga1+lgq)]+1/[(lga1+lgq)(lga1+2lgq)]+……+1/[lga1+(n-2)q][lga1+(n-1)q]
={1/lga1-1/(lga1+lgq)+1/(lga1+lgq)-1/(lga1+2lgq)+……-1/[lga1+(n-1)q]}/lgq
={1/lga1-1/[lga1+(n-1)q]}/lgq
=(n-1)/(lga1*lgan)
设a1,a2,a3,.an都是正数,且构成等比数列,求证1/lga1*lga2+1/lga2*lga3+.1/lgan-
已知正项等比数列{an}中,对任意的n∈N+,都有lga1+lga2+lga3+……+lgan=n^2+n
在等差数列{An}中,a1=1000,q=0.1,又设Bn=(1/n)[lga1+lga2+lga3+...+lgan]
已知正项等比数列{an}中,a2×a (n-1)+a4 ×a(n-3)=200,则lga1+lga2+...lgan=?
数列{an}以1000为首项,公比为1/10的等比数列,数列{bn}满足bk=1/k(lga1+lga2
数列{an}是首项a1=100,公比q=1/10的等比数列,数列{bn}满足bn=1/n(lga1+lga2+...lg
数列{An},其中An=8(1/2)^(n-1),若Mn=lgA1+lgA2+……+lgAn,求Mn最大值和此时n的值
在等比数列中an若an>0 a1a100=100 则 lga1+lga2+lga3+……+lga100
已知数列An是各项均为正数的等差数列,lga1,lga2,lga4成等差数列,又Bn=1/A(2^n),n=1,2,3,
若lga1,lga2,lga3,lga4是公差为5的等差数列,则a4/a3=
设各项均为正数的数列{an}满足:lga1+lga2/2+lga3/3+...+lgan/n=n,n∈N*,求an
已知数列{an}是一个以为公比Q(Q大于0),以为首项a1(a1大于0)的等比数列,求lga1+lga2+lga3+.+