映射f:X→Y,A包含于X,B包含于X,证明f(A并B)=f(A)∪f(B)
设映射f:X——Y,A包含于X,B包含于X,证明1,f(A并B)=f(A)并f(B) 2,f(A交B)包含于f(A)交f
设映射f:X->Y,A被包含于X.B被包含于X,证明:f(A并B)=f(A)A并f(B)
设f(x)在[a,b]上连续,且f的至于f([a,b])包含于[a,b].证明至少存在一点ξ属于(a,b)使得f(ξ)=
设映射f:X→Y,A是X的子集B是X的子集证明(1)f(A∪B)=f(A)∪f(B)(2)f(A∩B)是f(A)∩f(B
已知函数f(x)=x∧2+px+q,且集合A={x|x=f(x)},B={x|f[f(x)]=x}.求证A包含于B.
微分中值定理问题已知f(x)于[a,b]上二阶可导,A(a,f(a)),B(b,f(b)).线段AB交y=f(x)曲线于
设集合A=B={(x,y)|x∈R,y∈R},f是A到B的映射,并满足f:(x,y)→(-xy,x-y).(1)求B中元
已知函数f(x)=x2+ax+b,且集合A={x|x=fx},B={x|x=f[f(x)]},(1)求证A包含于B;(2
{a,b}包含于A包含于{a,b,c,d,e,f},集合A为
证明f(a+x)=f(b-x) 则f(x)的对称轴
设f(y)连续,证明∫a→b dx∫a→x f(y)dy=∫a→b f(y)(b-y)dy
设f∈C[A,B],a,b∈(A,B),证明:lim1\h ∫ (f(x+h)-f(x))dx=f(b)-f(a) (h