(1) 1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 19:19:58
(1) 1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)
(2) abc=1 ,计算 1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
(2) abc=1 ,计算 1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
(1) 1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)
=2/1*2+2/2*3+2/3*4+.+2/100*101
=2(1/1*2+1/2*3+1/3*4+.1/100*101)
=2(1/1-1/2+1/2-1/3+1/3-1/4+.+1/100-1/101)
=2*(1-1/101)
=200/101
(2) abc=1 ,计算
1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
=abc/(abc+a+ab)+abc/(1+b+bc)+1/(1+c+ca)
=bc/(bc+1+b)+abc/(1+b+bc)+1/(1+c+ca)
=(bc+abc)/(bc+1+b)+1/(1+c+ac)
=b(c+ac)/(bc+abc+b)+1/(1+c+ac)
=(c+ac)/(c+ac+1)+1/(1+c+ac)
=(c+ac+1)/(c+ac+1)
=1
=2/1*2+2/2*3+2/3*4+.+2/100*101
=2(1/1*2+1/2*3+1/3*4+.1/100*101)
=2(1/1-1/2+1/2-1/3+1/3-1/4+.+1/100-1/101)
=2*(1-1/101)
=200/101
(2) abc=1 ,计算
1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
=abc/(abc+a+ab)+abc/(1+b+bc)+1/(1+c+ca)
=bc/(bc+1+b)+abc/(1+b+bc)+1/(1+c+ca)
=(bc+abc)/(bc+1+b)+1/(1+c+ac)
=b(c+ac)/(bc+abc+b)+1/(1+c+ac)
=(c+ac)/(c+ac+1)+1/(1+c+ac)
=(c+ac+1)/(c+ac+1)
=1
200*(1-1/2)*(1-1/3)*(1-1/4)*.*(1-1/100)
(1-1/2x2)(1-1/3x3).(1-1/100x100)
1 + 1 +2 分之1+ 1+2+3分之1 +(省略号)+1+2+3+(省略号)+100分之1
(1-1/100)(1-1/99)(1-1/98)...(1-1/4)(1-1/3)(1-1/2)
100/1-1)(99/1-1)(98/1-1)…(4/1-1)(3/1-1)(2分之1-1)
(1/100-1)(1/99-1)(1/98-1).(1/4-1)(1/3-1)(1/2-1)等于多少?
(1-1/2)*(1-1/3)*(1-1/4)*……*(1-1/100)
(1) 1,1/3,1/5,1/7,1/9 (2)- 1/2*1,1/2*2,- 1/2*3,1/2*4,-1/2*5
(1-1\2^2)*(1-1\3^2)*•••*(1-1\100^2)
1;(1-1/2^2)(1-1/3^2)(1-1/4^2)````````````(1-1/99^2)(1-1/100^
(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+………+(1/1+2+3+………+100)
(1-1/2)(1-1/3)(1-1/4).(1-1/99)(1-1/100)等于?