圆O的内接正十边形ABCD·······中,AD分别交OB、OC于点M、N.求证:(1)MN∥BC; (2)MN+BC﹦
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 09:47:57
圆O的内接正十边形ABCD·······中,AD分别交OB、OC于点M、N.求证:(1)MN∥BC; (2)MN+BC﹦OB.
图不标准,友情附赠一张.
1.证明:连接AB、AC、BD、CD、BN.
因为正十边形ABCD······,所以能从中得到条件AB=BC=CD,∠ABC=∠BCD,且∠BOC=∠DOC=∠AOB=36°
那么因为AB=CD,∠ABC=∠BCD,BC=CB,所以有△ABC≌△DCB
所以,∠ACB=∠DBC,又因为A、B、C、D四点共圆,所以∠DAC=∠DBC=∠ACB,所以MN∥BC
2.证明:因为OB=OC且∠BOC=36°,所以,∠OBC=∠OCB=72°,因为MN∥BC,所以∠OMN=∠ONM=72°
因为∠NAB=∠DAB=(1/2)∠DOB=∠BOC=∠BON
所以A、B、N、O四点共圆,所以∠BNA=∠AOB=36°
因为MN∥BC,所以∠NBC=∠BNA=36°,那么∠NBO=∠OBC-∠NBC=36°=∠BNA,所以MN=MB
同理可知MN=NC,又因为∠BNC=180°-∠ONM-∠BNA=72°=∠OMN,∠NCB=72°=∠ONM
所以△BNC≌△OMN,所以OM=BC
所以OB=OM+MB=MN+BC
1.证明:连接AB、AC、BD、CD、BN.
因为正十边形ABCD······,所以能从中得到条件AB=BC=CD,∠ABC=∠BCD,且∠BOC=∠DOC=∠AOB=36°
那么因为AB=CD,∠ABC=∠BCD,BC=CB,所以有△ABC≌△DCB
所以,∠ACB=∠DBC,又因为A、B、C、D四点共圆,所以∠DAC=∠DBC=∠ACB,所以MN∥BC
2.证明:因为OB=OC且∠BOC=36°,所以,∠OBC=∠OCB=72°,因为MN∥BC,所以∠OMN=∠ONM=72°
因为∠NAB=∠DAB=(1/2)∠DOB=∠BOC=∠BON
所以A、B、N、O四点共圆,所以∠BNA=∠AOB=36°
因为MN∥BC,所以∠NBC=∠BNA=36°,那么∠NBO=∠OBC-∠NBC=36°=∠BNA,所以MN=MB
同理可知MN=NC,又因为∠BNC=180°-∠ONM-∠BNA=72°=∠OMN,∠NCB=72°=∠ONM
所以△BNC≌△OMN,所以OM=BC
所以OB=OM+MB=MN+BC
在梯形ABCD中,AD平行于BC,对角线AC,BD交于点O,M,N分别为BD,AC的中点.求证:MN=(BC-AD)
在等边三角形ABC中,角ACB的平分线相交于O,OB、OC的垂直平分线交BC于M、N,求证:BM=MN=NC
已知正方形ABCD的对角线交于点O,M,N在OB和OC上,且MN平行BC,连接DN,MC,问DN
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O作MN⊥BD,分别交AD,BC于点M,N
在平行四边形ABCD中,E、F分别是AD、BC上的点,且AE=BF,BE交AF于M,CE交DF于N,求证:MN=1/2A
在平行四边形ABCD中,E F分别是AD BC上的点,且AE=BF,BE交AF于M CE交DF于N 求证:MN=1/2A
如图,已知⊙O的内接正十边形ABCD…,AD与OB、OC交于M、N.
如图梯形ABCD中,AD‖BC,对角线AC,BD交于D,M,N分别为BD,AC中点,求证:MN=1/2(BC-AD)
如图,梯形ABCD中,对角线交于O,MN‖AB‖CD,且直线MN分别交AD,BC于M,N,求证:MO=NO1/AB+1/
如图 AB/BC/CD分别与圆o切于E、F、G 且AB∥CD 连接OB、OC 延长OC交圆o于点M,过点M作MN∥OB于
在△ABC中,AD是∠BAC的平分线,M是AD中点,MN⊥AD交BC的延长线于N,求证:DN²=BN·CN.
在梯形ABCD中,AD//BC,∠B+∠C=90°,M、N分别是AD、BC的中点.求证:MN=1/2 (BC-AD)