作业帮 > 数学 > 作业

若(1+x)的n+1次方的展开式中x的n-1次方的系数为an,则1/a1+1/a2+1/a3+...+1/an的值为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:53:16
若(1+x)的n+1次方的展开式中x的n-1次方的系数为an,则1/a1+1/a2+1/a3+...+1/an的值为
若(1+x)的n+1次方的展开式中x的n-1次方的系数为an,则1/a1+1/a2+1/a3+...+1/an的值为
n+1-(n-1)=2
C(n+1)n-1=C(n+1)2
所以展开式为
C(n+1)2*1^2x^(n+1-2)
n(n+1)/2 *1*x^(n-1)
所以an=n(n+1)/2
1/an=2/n(n+1)=2[1/n-1/(n+1)]
1/a1+1/a2+1/a3+.+1/an
=2[1/1-1/2+1/2-1/3+1/3-1/4+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)