证明:(sinθ)^4+(sin2θ)^4/4+(sin4θ)^4/16+(sin8θ)^4/64=(sinθ)^2-(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 06:04:44
证明:(sinθ)^4+(sin2θ)^4/4+(sin4θ)^4/16+(sin8θ)^4/64=(sinθ)^2-(sin16θ)^/256
(sinθ)^4=(sinθ)^2(1-(cosθ)^2)=(sinθ)^2-(sinθcosθ)^2=(sinθ)^2-(sin2θ)^2/4
所以(sinθ)^4+(sin2θ)^4/4=(sinθ)^2-(sin2θ)^2/4+(sin2θ)^4/4=(sinθ)^2-(sin2θ)^2/4(1-(sin2θ)^2)=(sinθ)^2-(sin2θ)^2(cos2θ)^2)/4=(sinθ)^2-(sin4θ)^2/16
同理 一直加到(sin8θ)^4/64 同样的变换 结果等于(sinθ)^2-(sin16θ)^/256
所以(sinθ)^4+(sin2θ)^4/4=(sinθ)^2-(sin2θ)^2/4+(sin2θ)^4/4=(sinθ)^2-(sin2θ)^2/4(1-(sin2θ)^2)=(sinθ)^2-(sin2θ)^2(cos2θ)^2)/4=(sinθ)^2-(sin4θ)^2/16
同理 一直加到(sin8θ)^4/64 同样的变换 结果等于(sinθ)^2-(sin16θ)^/256
证明:2sinθ+sin2θ=4sinθ×cos^2(θ/2)
证明恒等式4sinθcos²θ/2=2sinθ+sin2θ
求证4sinθ(cosθ/2)^2=2sinθ+sin2θ
4sinθcos²θ/2=2sinθ+sin2θ
4sinΘcos²(θ/2)=2sinΘ+sin2Θ
证明(cosα)的八次方-(sinα)的八次方-cos2α=-1/4sin2αsin4α
若sin(π/4+α)=sinθ+cosθ,2sin^2β=sin2θ,求证:sin2θ+2cos2β=3
证明 (2sinα-sin2α)/(2sinα+sin2α)=tan²(θ/2)
已知sinθ=4/5,且sinθ+cosθ>1,sin2θ=
求证cos^8α-sin^8α 1/4sin2αsin4α=cos2α
若2sin(π4+α)=sin θ+cos θ,2sin2β=sin 2θ,求证:sin&
证明2sinθcosθ=sin2θ.